1,339 research outputs found
NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area
Glutamate receptors activated by NMDA (NMDARs) or AMPA (AMPARs) are clustered on dendritic spines of pyramidal cells. Both the AMPAR-mediated postsynaptic responses and the synaptic AMPAR immunoreactivity show a large intersynapse variability. Postsynaptic responses mediated by NMDARs show less variability. To assess the variability in NMDAR content and the extent of their coexistence with AMPARs in Schaffer collateral-commissural synapses of adult rat CA1 pyramidal cells, electron microscopic immunogold localization of receptors has been used. Immunoreactivity of NMDARs was detected in virtually all synapses on spines, but AMPARs were undetectable, on average, in 12% of synapses. A proportion of synapses had a very high AMPAR content relative to the mean content, resulting in a distribution more skewed toward larger values than that of NMDARs. The variability of synaptic NMDAR content [coefficient of variation (CV), 0.64-0.70] was much lower than that of the AMPAR content (CV, 1.17-1.45). Unlike the AMPAR content, the NMDAR content showed only a weak correlation with synapse size. As reported previously for AMPARs, the immunoreactivity of NMDARs was also associated with the spine apparatus within spines. The results demonstrate that the majority of the synapses made by CA3 pyramidal cells onto spines of CA1 pyramids express both NMDARs and AMPARs, but with variable ratios. A less-variable NMDAR content is accompanied by a wide variability of AMPAR content, indicating that the regulation of expression of the two receptors is not closely linked. These findings support reports that fast excitatory transmission at some of these synapses is mediated by activation mainly of NMDARs
Entwicklung eines zeitlichen und räumlichen Entscheidungshilfesystems gegen den Erbsenwickler (Cydia nigricana, Fabricius)
Pea moths (Cydia nigricana) can cause severe damages in pea crops (Pisum sativum). Larvae feed on the seeds in the pods and contaminate them with feces. In the cultivation of organic green peas 0.5 % damaged seeds lead to the denial of
whole pea fields (Schulz & Saucke 2005). There can be a yield loss in forage peas and a loss of quality of seeds for propagation. Within the framework of the project to improve the spatial and temporal cultivation strategy of peas to get less damage due to pea moths, is the intention. For
a better spatial and temporal cultivation strategy, the DSS creates a map with areas with an infestation risk factor. The higher the risk factor, the earlier the new fields
should be cultivated. Therefore, the first part of the DSS works with georeferenced data, like distances between fields of the previous year and the currently planned fields and their infestation risk. The coincidence of the flowering of peas and the flight of pea moths is very important for the infestation. Hence, the second part of the DSS predicts the phenology of the pea and the development of the pea moth for a better precision of the pest control
Erbsenwickler (Cydia nigricana) in Gemüse- und Körnererbsen: Grundlagen zur Befallsprognose und Schadensprävention
Spatio-temporal distribution, combined with aspects of insect biology and ecology can influence the infestation risk of the key pea pest Cydia nigricana in vegetable- and
field peas. The proximity of pea fields of the previous cultivation period highly affects the infestation potential of the moth. The presented study aims to monitor the
infestation development in three different regions in Germany (North Hesse, Saxony, Saxony-Anhalt) in four consecutive years and to relate empirical pest incidences to
key factors as crop abundance, the distance to previous pea fields, the pea plant phenology and climatic conditions. In a next step, these data will form the basis for the
elaboration of a computer-aided decision support system, which assists farmers in implementing preventive strategies based on risk avoidance
Primary tumor sidedness and benefit from FOLFOXIRI plus bevacizumab as initial therapy for metastatic colorectal cancer. Retrospective analysis of the TRIBE trial by GONO
Right-sided metastatic colorectal cancer (mCRC) patients have poor prognosis and achieve limited benefit from first-line doublets plus a targeted agent. In this unplanned analysis of the TRIBE study, we investigated the prognostic and predictive impact of primary tumor sidedness in mCRC patients and the differential impact of the intensification of the chemotherapy in subgroups defined according to both primary tumor sidedness and RAS and BRAF mutational status
Optical spectra of selected Chamaeleon I young stellar objects
We present optical spectra of eight candidate brown dwarfs and a previously
known T Tauri star (Sz 33) of the Chamaeleon I dark cloud. We derived spectral
types based on the strength of the TiO or VO absorption bands present in the
spectra of these objects as well as on the PC3 index of Martin et al. (1999).
Photometric data from the literature are used to estimate the bolometric
luminosities for these sources. We apply D'Antona & Mazzitelli (1997) pre-main
sequence evolutionary tracks and isochrones to derive masses and ages. Based on
the presence of Halpha in emission, we confirm that most of the candidates are
young objects. Our sample however includes two sources for which we can only
provide upper limits for the emission in Halpha; whereas these two objects are
most likely foreground/background stars, higher resolution spectra are required
to confirm their true nature. Among the likely cloud members, we detect one new
sub-stellar object and three transition stellar/sub-stellar sources.Comment: 22 pages - manuscript forma
Solar sail capture trajectories at Mercury
Mercury is an ideal environment for future planetary exploration by solar sail since it has proved difficult to reach with conventional propulsion and hence remains largely unexplored. In addition, its proximity to the Sun provides a solar sail acceleration of order ten times the sail characteristic acceleration at 1 AU. Conventional capture techniques are shown to be unsuitable for solar sails and a new method is presented. It is shown that capture is bound by upper and lower limits on the orbital elements of the approach orbit and that failure to be within limits results in a catastrophic collision with the planet. These limits are presented for a range of capture inclinations and sail characteristic accelerations. It is found that sail hyperbolic excess velocity is a critical parameter during capture at Mercury, with only a narrow allowed band in order to avoid collision with the planet. The new capture methodis demonstrated for a Mercury sample return mission
Analysis of the intraspinal calcium dynamics and its implications on the plasticity of spiking neurons
The influx of calcium ions into the dendritic spines through the
N-metyl-D-aspartate (NMDA) channels is believed to be the primary trigger for
various forms of synaptic plasticity. In this paper, the authors calculate
analytically the mean values of the calcium transients elicited by a spiking
neuron undergoing a simple model of ionic currents and back-propagating action
potentials. The relative variability of these transients, due to the stochastic
nature of synaptic transmission, is further considered using a simple Markov
model of NMDA receptos. One finds that both the mean value and the variability
depend on the timing between pre- and postsynaptic action-potentials. These
results could have implications on the expected form of synaptic-plasticity
curve and can form a basis for a unified theory of spike time-dependent, and
rate based plasticity.Comment: 14 pages, 10 figures. A few changes in section IV and addition of a
new figur
First report on the whitefly, Aleurodicus pseudugesii on the coconut palm, Cocos nucifera in Brazil.
201
Optimal low-thrust trajectories to asteroids through an algorithm based on differential dynamic programming
In this paper an optimisation algorithm based on Differential Dynamic Programming is applied to the design of rendezvous and fly-by trajectories to near Earth objects. Differential dynamic programming is a successive approximation technique that computes a feedback control law in correspondence of a fixed number of decision times. In this way the high dimensional problem characteristic of low-thrust optimisation is reduced into a series of small dimensional problems. The proposed method exploits the stage-wise approach to incorporate an adaptive refinement of the discretisation mesh within the optimisation process. A particular interpolation technique was used to preserve the feedback nature of the control law, thus improving robustness against some approximation errors introduced during the adaptation process. The algorithm implements global variations of the control law, which ensure a further increase in robustness. The results presented show how the proposed approach is capable of fully exploiting the multi-body dynamics of the problem; in fact, in one of the study cases, a fly-by of the Earth is scheduled, which was not included in the first guess solution
- …
