27 research outputs found

    Junctional adhesion molecule-A is abnormally expressed in diffuse cutaneous systemic sclerosis skin and mediates myeloid cell adhesion.

    Get PDF
    OBJECTIVE: To investigate the role of junctional adhesion molecule-A (JAM-A) in the pathogenesis of systemic sclerosis (SSc). METHODS: Biopsy specimens from proximal and distal arm skin and serum were obtained from patients with SSc and normal volunteers. To determine the expression of JAM-A on SSc dermal fibroblasts and in SSc skin, cell surface ELISAs and immunohistology were performed. An ELISA was designed to determine the amount of soluble JAM-A (sJAM-A) in serum. Myeloid U937 cell-SSc dermal fibroblast and skin adhesion assays were performed to determine the role of JAM-A in myeloid cell adhesion. RESULTS: The stratum granulosum and dermal endothelial cells (ECs) from distal arm SSc skin exhibited significantly decreased expression of JAM-A in comparison with normal volunteers. However, sJAM-A was increased in the serum of patients with SSc compared with normal volunteers. Conversely, JAM-A was increased on the surface of SSc compared with normal dermal fibroblasts. JAM-A accounted for a significant portion of U937 binding to SSc dermal fibroblasts. In addition, JAM-A contributed to U937 adhesion to both distal and proximal SSc skin. CONCLUSIONS: JAM-A expression is dysregulated in SSc skin. Decreased expression of JAM-A on SSc ECs may result in a reduced response to proangiogenic basic fibroblast growth factor. Increased JAM-A expression on SSc fibroblasts may serve to retain myeloid cells, which in turn secrete angiogenic factors

    SheddomeDB: the ectodomain shedding database for membrane-bound shed markers

    Full text link

    Junctional adhesion molecule-C is a soluble mediator of angiogenesis

    No full text
    Junctional adhesion molecule-C (JAM-C) is an adhesion molecule expressed by endothelial cells (ECs) that plays a role in tight junction formation, leukocyte adhesion, and transendothelial migration. In the current study, we investigated whether JAM-C is found in soluble form and whether soluble JAM-C (sJAM-C) mediates angiogenesis. We found that JAM-C is present in soluble form in normal serum and elevated in rheumatoid arthritis (RA) serum. The concentration of sJAM-C is also elevated locally in RA synovial fluid compared with RA serum or osteoarthritis synovial fluid. sJAM-C was also present in the culture supernatant of human microvascular ECs (HMVECs) and immortalized human dermal microvascular ECs, and its concentration was increased following cytokine stimulation. In addition, sJAM-C cleavage from the cell surface was mediated in part by a disintegrin and metalloproteinases 10 and 17. In functional assays, sJAM-C was both chemotactic and chemokinetic for HMVECs and induced HMVEC tube formation on Matrigel in vitro. Neutralizing anti-JAM-C Abs inhibited RA synovial fluid-induced HMVEC chemotaxis and sJAM-C-induced HMVEC tube formation on Matrigel. sJAM-C also induced angiogenesis in vivo in the Matrigel plug and sponge granuloma models. Moreover, sJAM-C-mediated HMVEC chemotaxis was dependent on Src, p38, and PI3K. Our results show that JAM-C exists in soluble form and suggest that modulation of sJAM-C may provide a novel route for controlling pathological angiogenesis

    Epigallocatechin-3-gallate inhibits IL-6 synthesis and suppresses transsignaling by enhancing soluble gp130 production

    No full text
    Regulation of IL-6 transsignaling by the administration of soluble gp130 (sgp130) receptor to capture the IL-6/soluble IL-6R complex has shown promise for the treatment of rheumatoid arthritis (RA). However, enhancing endogenous sgp130 via alternative splicing of the gp130 gene has not yet been tested. We found that epigallocatechin-3-gallate (EGCG), an anti-inflammatory compound found in green tea, inhibits IL-1ÎČ–induced IL-6 production and transsignaling in RA synovial fibroblasts by inducing alternative splicing of gp130 mRNA, resulting in enhanced sgp130 production. Results from in vivo studies using a rat adjuvant-induced arthritis model showed specific inhibition of IL-6 levels in the serum and joints of EGCG-treated rats by 28% and 40%, respectively, with concomitant amelioration of rat adjuvant-induced arthritis. We also observed a marked decrease in membrane-bound gp130 protein expression in the joint homogenates of the EGCG-treated group. In contrast, quantitative RT-PCR showed that the gp130/IL-6Rα mRNA ratio increased by ∌2-fold, suggesting a possible mechanism of sgp130 activation by EGCG. Gelatin zymography results showed EGCG inhibits IL-6/soluble IL-6R–induced matrix metalloproteinase-2 activity in RA synovial fibroblasts and in joint homogenates, possibly via up-regulation of sgp130 synthesis. The results of these studies provide previously undescribed evidence of IL-6 synthesis and transsignaling inhibition by EGCG with a unique mechanism of sgp130 up-regulation, and thus hold promise as a potential therapeutic agent for RA

    Downstream gene activation of the receptor ALX by the agonist annexin A1

    Get PDF
    BACKGROUND: Our understanding of pro-resolution factors in determining the outcome of inflammation has recently gained ground, yet not many studies have investigated whether specific genes or patterns of genes, are modified by these mediators. Here, we have focussed on the glucocorticoid modulated pro-resolution factor annexin A1 (AnxA1), studying if its interaction with the ALX receptor would affect downstream genomic targets. METHODOLOGY/PRINCIPAL FINDINGS: Using microarray technology in ALX transfected HEK293 cells, we discovered an over-lapping, yet distinct gene activation profile for AnxA1 compared to its N-terminal mimetic peptide Ac2-26, which may be suggestive of unique downstream inflammatory outcomes for each substance. When the up-regulated genes were explored, consistently induced was the sphingosine phosphate phosphatase-2 gene (SGPP2), involved in regulation of the sphingosine 1 phosphate chemotactic system. Up-regulation of this gene, as well as JAG1 (and down-regulation of JAM3), was confirmed using real time PCR both with transfected HEK293 cells and human peripheral blood leukocytes. Furthermore, lymph nodes taken from AnxA1(null) mice displayed lower SGPP2 gene activity. Finally, connectivity map analysis for AnxA1 and peptide Ac2-26 indicated striking similarities with known anti-inflammatory therapeutics, glucocorticoids and aspirin-like compounds, as well as with histone deacetylase inhibitors. CONCLUSION/SIGNIFICANCE: We believe these new data raise the profile of AnxA1 from being solely a short-term anti-inflammatory factor, to being a ‘trigger’ of the endogenous pro-resolution arsenal
    corecore