25 research outputs found

    Evaluating the Progress of Atmospheric Research in Understanding the Mechanics Behind Tropical Cyclone-Induced Tornadogenesis

    Get PDF
    As tropical cyclones make landfall along coastlines all over the world, havoc is wreaked on families, businesses, economies, etc. A generally overlooked topic is one of the inherent dangers in tropical cyclone landfalls. These can produce tornadoes in the spiral rain bands coming ashore by encountering increasingly higher frictional convergence. The second component will be assessing which other parameters could be analyzed on a synoptic timescale to evaluate how we can potentially improve longer term predictions of tropical cyclone (TC)-induced tornadogenesis. The analysis showed that the combination of high low-level moisture, vertical temperature gradients, and enhanced vertical wind shear is the key factor that links landfalling tropical cyclones to associated tornadogenesis prior to, during, and/or after the time of landfall. An integral part of the process preceding TC-induced tornadogenesis is the enhanced vertical temperature gradient that develops as the storm maintains warm-core characteristics aloft but develops cold-core characteristics closer to the surface. The examination of forecaster perspectives showed that over the past few years there is strong evidence of forecaster improvement based upon greater cognizance of forecast variables linked to TC-induced tornadoes

    Cluster K Mycobacteriophages: Insights into the Evolutionary Origins of Mycobacteriophage TM4

    Get PDF
    Five newly isolated mycobacteriophages –Angelica, CrimD, Adephagia, Anaya, and Pixie – have similar genomic architectures to mycobacteriophage TM4, a previously characterized phage that is widely used in mycobacterial genetics. The nucleotide sequence similarities warrant grouping these into Cluster K, with subdivision into three subclusters: K1, K2, and K3. Although the overall genome architectures of these phages are similar, TM4 appears to have lost at least two segments of its genome, a central region containing the integration apparatus, and a segment at the right end. This suggests that TM4 is a recent derivative of a temperate parent, resolving a long-standing conundrum about its biology, in that it was reportedly recovered from a lysogenic strain of Mycobacterium avium, but it is not capable of forming lysogens in any mycobacterial host. Like TM4, all of the Cluster K phages infect both fast- and slow-growing mycobacteria, and all of them – with the exception of TM4 – form stable lysogens in both Mycobacterium smegmatis and Mycobacterium tuberculosis; immunity assays show that all five of these phages share the same immune specificity. TM4 infects these lysogens suggesting that it was either derived from a heteroimmune temperate parent or that it has acquired a virulent phenotype. We have also characterized a widely-used conditionally replicating derivative of TM4 and identified mutations conferring the temperature-sensitive phenotype. All of the Cluster K phages contain a series of well conserved 13 bp repeats associated with the translation initiation sites of a subset of the genes; approximately one half of these contain an additional sequence feature composed of imperfectly conserved 17 bp inverted repeats separated by a variable spacer. The K1 phages integrate into the host tmRNA and the Cluster K phages represent potential new tools for the genetics of M. tuberculosis and related species

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies

    Evaluating Linkages between Atmospheric Blocking Patterns and Heavy Rainfall Events across the North-Central Mississippi River Valley for Different ENSO Phases

    Get PDF
    Over the last six to seven decades, there has been a substantial increase in atmospheric research to better understand the dynamics and evolution of atmospheric blocking events. It is well known that atmospheric blocking serves as a catalyst for increasing the frequency of atmospheric flow regime stagnation and forecast unpredictability. This study built upon the results of previous work by expanding upon the findings of various climatologies and case studies. This work analyzes specific trends observed in association with atmospheric blocking predominantly across the central and eastern Pacific Ocean. Such trends include the relationship between the size, duration, and onset position of atmospheric blocking events and the frequency, duration, and intensity of heavy rainfall events across the central United States. A strong focus is placed on examining the duration and spatial extent of atmospheric blocking which has been found to influence the intensity of heavy rainfall events. The goal is to further bridge the gap between the location and duration of blocking highs and the intensity, duration, and frequency of heavy rainfall events which occur downstream of such blocking events

    Sensitive versus Rough Dependence under Initial Conditions in Atmospheric Flow Regimes

    No full text
    In this work, we will identify the existence of “rough dependence on initial conditions” in atmospheric phenomena, a concept which is a problem for weather analysis and forecasting. Typically, two initially similar atmospheric states will diverge slowly over time such that forecasting the weather using the Navier-Stokes equations is useless after some characteristic time scale. With rough dependence, two initial states diverge very quickly, implying forecasting may be impossible. Using previous research in atmospheric science, rough dependence is characterized by using quantities that can be calculated using atmospheric data and quantities. Rough dependence will be tested for and identified in atmospheric phenomena at different time scales using case studies. Data were provided for this project by archives outside the University of Missouri (MU) and by using the MU RADAR at the South Farm experiment station
    corecore