1,996 research outputs found

    Essential spectra and exponential estimates of eigenfunctions of lattice operators of quantum mechanics

    Full text link
    This paper is devoted to estimates of the exponential decay of eigenfunctions of difference operators on the lattice Z^n which are discrete analogs of the Schr\"{o}dinger, Dirac and square-root Klein-Gordon operators. Our investigation of the essential spectra and the exponential decay of eigenfunctions of the discrete spectra is based on the calculus of so-called pseudodifference operators (i.e., pseudodifferential operators on the group Z^n) with analytic symbols and on the limit operators method. We obtain a description of the location of the essential spectra and estimates of the eigenfunctions of the discrete spectra of the main lattice operators of quantum mechanics, namely: matrix Schr\"{o}dinger operators on Z^n, Dirac operators on Z^3, and square root Klein-Gordon operators on Z^n

    Dynamical Encoding by Networks of Competing Neuron Groups: Winnerless Competition

    Get PDF
    Following studies of olfactory processing in insects and fish, we investigate neural networks whose dynamics in phase space is represented by orbits near the heteroclinic connections between saddle regions (fixed points or limit cycles). These networks encode input information as trajectories along the heteroclinic connections. If there are N neurons in the network, the capacity is approximately e(N-1)!, i.e., much larger than that of most traditional network structures. We show that a small winnerless competition network composed of FitzHugh-Nagumo spiking neurons efficiently transforms input information into a spatiotemporal output

    Coarsening in potential and nonpotential models of oblique stripe patterns

    Full text link
    We study the coarsening of two-dimensional oblique stripe patterns by numerically solving potential and nonpotential anisotropic Swift-Hohenberg equations. Close to onset, all models exhibit isotropic coarsening with a single characteristic length scale growing in time as t1/2t^{1/2}. Further from onset, the characteristic lengths along the preferred directions x^\hat{x} and y^\hat{y} grow with different exponents, close to 1/3 and 1/2, respectively. In this regime, one-dimensional dynamical scaling relations hold. We draw an analogy between this problem and Model A in a stationary, modulated external field. For deep quenches, nonpotential effects produce a complicated dislocation dynamics that can lead to either arrested or faster-than-power-law growth, depending on the model considered. In the arrested case, small isolated domains shrink down to a finite size and fail to disappear. A comparison with available experimental results of electroconvection in nematics is presented.Comment: 13 pages, 13 figures. To appear in Phys. Rev.

    The 2004 Sumatra tsunami as recorded on the Atlantic coast of South America

    Get PDF
    The 2004 Sumatra tsunami propagated throughout the World Ocean and was clearly recorded by tide gauges on the Atlantic coast of South America. A total of 17 tsunami records were found and subsequently examined for this region. Tsunami wave heights and arrival times are generally consistent with numerical modeling results. Maximum wave heights of more than 1.2 m were observed on the coasts of Uruguay and southeastern Brazil. Marked differences in tsunami height from pairs of closely located tide gauge sites on the coast of Argentina illustrate the importance that local topographic resonance effects can have on the observed wave response. Findings reveal that, outside the Indian Ocean, the highest waves were recorded in the South Atlantic and not in the Pacific as has been previously suggested

    Interface-Induced Plasmon Nonhomogeneity in Nanostructured Metal-Dielectric Planar Metamaterial

    Get PDF
    Transformations of the electronic structure in thin silver layers in metal-dielectric (TiAlN/Ag) multilayer nanocomposite were investigated by a set of electron spectroscopy techniques. Localization of the electronic states in the valence band and reduction of electron concentration in the conduction band was observed. This led to decreasing metallic properties of silver in the thin films. A critical layer thickness of 23.5 nm associated with the development of quantum effects was determined by X-ray photoelectron spectroscopy. Scanning Auger electron microscopy of characteristic energy losses provided images of plasmon localization in the Ag layers. The nonuniformity of plasmon intensities distribution near the metal-nitride interfaces was assessed experimentally

    Routing with Congestion in Acyclic Digraphs

    Get PDF
    We study the version of the kk-disjoint paths problem where kk demand pairs (s1,t1)(s_1,t_1), \dots, (sk,tk)(s_k,t_k) are specified in the input and the paths in the solution are allowed to intersect, but such that no vertex is on more than cc paths. We show that on directed acyclic graphs the problem is solvable in time nO(d)n^{O(d)} if we allow congestion kdk-d for kk paths. Furthermore, we show that, under a suitable complexity theoretic assumption, the problem cannot be solved in time f(k)no(d/logd)f(k)n^{o(d/\log d)} for any computable function ff

    Cyclic Statistics In Three Dimensions

    Full text link
    While 2-dimensional quantum systems are known to exhibit non-permutation, braid group statistics, it is widely expected that quantum statistics in 3-dimensions is solely determined by representations of the permutation group. This expectation is false for certain 3-dimensional systems, as was shown by the authors of ref. [1,2,3]. In this work we demonstrate the existence of ``cyclic'', or ZnZ_n, {\it non-permutation group} statistics for a system of n > 2 identical, unknotted rings embedded in R3R^3. We make crucial use of a theorem due to Goldsmith in conjunction with the so called Fuchs-Rabinovitch relations for the automorphisms of the free product group on n elements.Comment: 13 pages, 1 figure, LaTex, minor page reformattin

    Essential spectra of difference operators on \sZ^n-periodic graphs

    Full text link
    Let (\cX, \rho) be a discrete metric space. We suppose that the group \sZ^n acts freely on XX and that the number of orbits of XX with respect to this action is finite. Then we call XX a \sZ^n-periodic discrete metric space. We examine the Fredholm property and essential spectra of band-dominated operators on lp(X)l^p(X) where XX is a \sZ^n-periodic discrete metric space. Our approach is based on the theory of band-dominated operators on \sZ^n and their limit operators. In case XX is the set of vertices of a combinatorial graph, the graph structure defines a Schr\"{o}dinger operator on lp(X)l^p(X) in a natural way. We illustrate our approach by determining the essential spectra of Schr\"{o}dinger operators with slowly oscillating potential both on zig-zag and on hexagonal graphs, the latter being related to nano-structures

    A Simple Theory of Condensation

    Full text link
    A simple assumption of an emergence in gas of small atomic clusters consisting of cc particles each, leads to a phase separation (first order transition). It reveals itself by an emergence of ``forbidden'' density range starting at a certain temperature. Defining this latter value as the critical temperature predicts existence of an interval with anomalous heat capacity behaviour cpΔT1/cc_p\propto\Delta T^{-1/c}. The value c=13c=13 suggested in literature yields the heat capacity exponent α=0.077\alpha=0.077.Comment: 9 pages, 1 figur

    Synchronous Behavior of Two Coupled Electronic Neurons

    Full text link
    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four dimensional ENs which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators.Comment: 26 pages, 10 figure
    corecore