107 research outputs found
Huge excitonic effects in layered hexagonal boron nitride
The calculated quasiparticle band structure of bulk hexagonal boron nitride
using the all-electron GW approximation shows that this compound is an
indirect-band-gap semiconductor. The solution of the Bethe-Salpeter equation
for the electron-hole two-particle Green function has been used to compute its
optical spectra and the results are found in excellent agreement with available
experimental data. A detailed analysis is made for the excitonic structures
within the band gap and found that the excitons belong to the Frenkel class and
are tightly confined within the layers. The calculated exciton binding energy
is much larger than that obtained by Watanabe {\it et al} using a Wannier model
to interpret their experimental results and assuming that h-BN is a
direct-band-gap semiconductor.Comment: 4 pages, 3 figure
Frustrated pretransitional phenomena in aperiodic composites
Citation: Mariette, C., Frantsuzov, I., Wang, B., Guerin, L., Rabiller, P., Hollingsworth, M. D., & Toudic, B. (2016). Frustrated pretransitional phenomena in aperiodic composites. Physical Review B, 94(18), 9. doi:10.1103/PhysRevB.94.184105This paper reports on symmetry breaking in the aperiodic inclusion compound n-octadecane/urea and its isotopomer n-octadecane/urea-d(4). The high-symmetry phase is described by a hexagonal rank-4 superspace group. Pretransitional phenomena in this crystallographic superspace reveal competing short-range-ordering phenomena within the high-symmetry phase. Very high-resolution diffraction data show that critical scattering appears at inequivalent points within the four-dimensional Brillouin zone, although the first phase transition at T-c1 near 158 K implies the condensation at only one of those points. The resulting superspace group remains of dimension 4. Two other phase transitions are reported at T-c2 = 152.8(4) K and T-c3 = 109(4) K in n-octadecane/urea-d(4). The two low-symmetry phases that arise are described by rank-5 superspace groups
The creation of modulated monoclinic aperiodic composites in n-alkane/urea compounds
Citation: Mariette, C., Guerin, L., Rabiller, P., Chen, Y. S., Bosak, A., Popov, A., . . . Toudic, B. (2015). The creation of modulated monoclinic aperiodic composites in n-alkane/urea compounds. Zeitschrift Fur Kristallographie, 230(1), 5-11. doi:10.1515/zkri-2014-1773n-Dodecane/urea is a member of the prototype series of n-alkane/urea inclusion compounds. At room temperature, it presents a quasi-one dimensional liquid-like state for the confined guest molecules within the rigid, hexagonal framework of the urea host. At lower temperatures, we report the existence of two other phases. Below T-c=248 K there appears a phase with rank four superspace group P6(1)22(00 gamma), the one typically observed at room temperature in n-alkane/urea compounds with longer guest molecules. A misfit parameter, defined by the ratio gamma=C-h/C-g (C-host/C-guest), is found to be 0.632 +/- 0.005. Below T-c1=123 K, a monoclinic modulated phase is created with a constant shift along c of the guest molecules in adjacent channels. The maximal monoclinic space group for this structure is P12(1)1(alpha 0 gamma). Analogies and differences with n-heptane/urea, which also presents a monoclinic, modulated low-temperature phase, are discussed
Neutron Laue and X-ray diffraction study of a new crystallographic superspace phase in n-nonadecane-urea
International audienceAperiodic composite crystals present long-range order without translational symmetry. These materials may be described as the intersection in three dimensions of a crystal which is periodic in a higher-dimensional space. In such materials, symmetry breaking must be described as structural changes within these crystallographic superspaces. The increase in the number of superspace groups with the increase in the dimension of the superspace allows many more structural solutions. This is illustrated in n-nonadecane-urea, revealing a fifth higher-dimensional phase at low temperature
Long-range modulation of a composite crystal in a five-dimensional superspace
Citation: Guerin, L., Mariette, C., Rabiller, P., Huard, M., Ravy, S., Fertey, P., . . . Toudic, B. (2015). Long-range modulation of a composite crystal in a five-dimensional superspace. Physical Review B, 91(18), 7. doi:10.1103/PhysRevB.91.184101The intergrowth crystal of n-tetracosane/urea presents a misfit parameter, defined by the ratio gamma = c(h)/c(g) (c(host)/c(guest)), that is very close to a commensurate value (gamma congruent to 1/3). High-resolution diffraction studies presented here reveal an aperiodic misfit parameter of gamma = 0.3369, which is found to be constant at all temperatures studied. A complex sequence of structural phases is reported. The high temperature phase (phase I) exists in the four-dimensional superspace group P6(1)22(00 gamma). At T-c1 = 179(1) K, a ferroelastic phase transition increases the dimension of the crystallographic superspace. This orthorhombic phase (phase II) is characterized by the five-dimensional (5D) superspace group C222(1)(00 gamma)(10 delta) with a modulation vector a(o)* + c(m)* = a(o)* + delta . c(h)*, in which the supplementary misfit parameter is delta = 0.025(1) in host reciprocal units. This corresponds to the appearance of a modulation of very long period (about 440 +/- 16 angstrom). At T-c2 = 163.0(5) K, a 5D to 5D phase transition leads to the crystallographic superspace group P2(1)2(1)2(1)(00 gamma)(00 delta) with a very similar value of delta. This phase transition reveals a significant hysteresis effect
Neutral-ionic phase transition : a thorough ab-initio study of TTF-CA
The prototype compound for the neutral-ionic phase transition, namely TTF-CA,
is theoretically investigated by first-principles density functional theory
calculations. The study is based on three neutron diffraction structures
collected at 40, 90 and 300 K (Le Cointe et al., Phys. Rev. B 51, 3374 (1995)).
By means of a topological analysis of the total charge densities, we provide a
very precise picture of intra and inter-chain interactions. Moreover, our
calculations reveal that the thermal lattice contraction reduces the indirect
band gap of this organic semi-conductor in the neutral phase, and nearly closes
it in the vicinity of the transition temperature. A possible mechanism of the
neutral-ionic phase transition is discussed. The charge transfer from TTF to CA
is also derived by using three different technics.Comment: 11 pages, 9 figures, 7 table
Fluorophore Labeled Kinase Detects Ligands That Bind within the MAPK Insert of p38α Kinase
The vast majority of small molecules known to modulate kinase activity, target the highly conserved ATP-pocket. Consequently, such ligands are often less specific and in case of inhibitors, this leads to the inhibition of multiple kinases. Thus, selective modulation of kinase function remains a major hurdle. One of the next great challenges in kinase research is the identification of ligands which bind to less conserved sites and target the non-catalytic functions of protein kinases. However, approaches that allow for the unambiguous identification of molecules that bind to these less conserved sites are few in number. We have previously reported the use of fluorescent labels in kinases (FLiK) to develop direct kinase binding assays that exclusively detect ligands which stabilize inactive (DFG-out) kinase conformations. Here, we present the successful application of the FLiK approach to develop a high-throughput binding assay capable of directly monitoring ligand binding to a remote site within the MAPK insert of p38α mitogen-activated protein kinase (MAPK). Guided by the crystal structure of an initially identified hit molecule in complex with p38α, we developed a tight binding ligand which may serve as an ideal starting point for further investigations of the biological function of the MAPK insert in regulating the p38α signaling pathway
Photoactivatable prodrugs of antimelanoma agent Vemurafenib
In this study, we report on novel
photoactivatable caged prodrugs
of vemurafenib. This kinase inhibitor was the first approved drug
for the personalized treatment of BRAF-mutated melanoma and showed
impressive results in clinical studies. However, the occurrence of
severe side effects and drug resistance illustrates the urgent need
for innovative therapeutic approaches. To conquer these limitations,
we implemented photoremovable protecting groups into vemurafenib.
In general, this caging concept provides spatial and temporal control
over the activation of molecules triggered by ultraviolet light. Thus,
higher inhibitor concentrations in tumor tissues might be reached
with less systemic effects. Our study describes the first development
of caged vemurafenib prodrugs useful as pharmacological tools. We
investigated their photochemical characteristics and photoactivation. <i>In vitro</i> evaluation proved the intended loss-of-function
and the light-dependent recovery of efficacy in kinase and cellular
assays. The reported vemurafenib photo prodrugs represent a powerful
biological tool for novel pharmacological approaches in cancer research
- …