271 research outputs found

    Heterologous Expression of Various PHA Synthase Genes in Rhodospirillum rubrum

    Get PDF
    The phototrophic non-sulfur purple bacterium Rhodospirillum rubrum is known for its metabolic versatility. Particularly, R. rubrum is able to synthesize PHA under heterotrophic or even autotrophic growth with carbon monoxide as carbon and energy source. R. rubrum has therefore become a promising candidate for future cheap PHA production. However, R. rubrum synthesizes lower amounts of PHAs in comparison to well-known PHA producers like Ralstonia eutropha H16 or recombinant Escherichia coli strains. Since the PHA synthase is the key enzyme of PHA biosynthesis, genes encoding for twelve different PHA synthases were heterologously expressed in two generated phaC deletion mutants of R. rubrum in this study. To clearly see the effect of the foreign PHA synthases, PHA-negative mutants were required. The single mutant R. rubrum ΔphaC2 showed a PHA-leaky phenotype (< 1 % PHA, wt/wt, of CDW), while the double mutant R. rubrum ΔphaC1ΔphaC2 accumulated no measurable PHA. Eight different PHA synthase genes of class I, and four of class IV were chosen for heterologous expression. All recombinant R. rubrum strains showed significant PHA synthesis and accumulation, although PHA contents in the recombinant strains of the single mutant R. rubrum ΔphaC2 were generally higher in comparison to those of the double mutant R. rubrum ΔphaC1ΔphaC2. Recombinant strains of the single mutant could be divided into two groups according to the accumulation of PHA in the cells. While recombinant strains dedicated to group one showed an increased PHA synthesis when compared to the wild type carrying an empty vector, strains of group two accumulated less PHA than the wild type. Finally, it was possible to increase the accumulation of PHA by up to 25 % due to heterologous expression of PHA synthase genes compared to the wild type

    Diffusion based degradation mechanisms in giant magnetoresistive spin valves

    Full text link
    Spin valve systems based on the giant magnetoresistive (GMR) effect as used for example in hard disks and automotive applications consist of several functional metallic thin film layers. We have identified by secondary ion mass spectrometry (SIMS) two main degradation mechanisms: One is related to oxygen diffusion through a protective cap layer, and the other one is interdiffusion directly at the functional layers of the GMR stack. By choosing a suitable material as cap layer (TaN), the oxidation effect can be suppressed.Comment: 3 pages, 3 figures. to be published in Appl. Phys. Let

    Omnivory and grazer functional composition moderate cascading trophic effects in experimental Fucus vesiculosus habitats

    Get PDF
    We tested the relative strength of direct versus indirect effects of an aquatic omnivore depending on the functional composition of grazers by manipulating the presence of gastropod and amphipod grazers and omnivorous shrimp in outdoor mesocosms. By selectively preying upon amphipods and reducing their abundance by 70–80%, omnivorous shrimp favoured the dominance of gastropods. While gastropods were the main microalgal grazers, amphipods controlled macroalgal biomass in the experiment. However, strong predation on the amphipod by the shrimp had no significant indirect effects on macroalgal biomass, indicating that when amphipod abundances declined, complementary feeding by the omnivore on macroalgae may have suppressed a trophic cascade. Accordingly, in the absence of amphipods, the shrimp grazed significantly on green algae and thereby suppressed the diversity of the macroalgal community. Our experiment demonstrates direct consumer effects by an omnivore on both the grazer and producer trophic levels in an aquatic food web, regulated by prey availability. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00227-010-1602-6) contains supplementary material, which is available to authorized users

    Controlled data storage for non-volatile memory cells embedded in nano magnetic logic

    Get PDF
    Among the beyond-CMOS technologies, perpendicular Nano Magnetic Logic (pNML) is a promising candidate due to its low power consumption, its non-volatility and its monolithic 3D integrability, which makes it possible to integrate memory and logic into the same device by exploiting the interaction of bi-stable nanomagnets with perpendicular magnetic anisotropy. Logic computation and signal synchronization are achieved by focus ion beam irradiation and by pinning domain walls in magnetic notches. However, in realistic circuits, the information storage and their read-out are crucial issues, often ignored in the exploration of beyond-CMOS devices. In this paper we address these issues by experimentally demonstrating a pNML memory element, whose read and write operations can be controlled by two independent pulsed currents. Our results prove the correct behavior of the proposed structure that enables high density memory embedded in the logic plane of 3D-integrated pNML circuits

    Immune-mediated competition in rodent malaria is most likely caused by induced changes in innate immune clearance of merozoites

    Get PDF
    Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS) by a virulent clone (AJ) in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs), background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter μ, the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, μ was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but future refinement of the model, challenged with other datasets, may lead to its discovery

    Tracing Personalized Health Curves during Infections

    Get PDF
    By concentrating on the relationship between health and microbe number over the course of infections, most pathogenic and mutualistic infections can be summarized by a small alphabet of curves, which has implications not only for basic research but for how we might treat patients

    Moss kill dates and modeled summer temperature track episodic snowline lowering and ice cap expansion in Arctic Canada through the Common Era

    Get PDF
    Most extant ice caps mantling low-relief Arctic Canada landscapes remained cold based throughout the late Holocene, preserving in situ bryophytes killed as ice expanded across vegetated landscapes. After reaching peak late Holocene dimensions ∼1900 CE, ice caps receded as Arctic summers warmed, exposing entombed vegetation. The calibrated radiocarbon ages of entombed moss collected near ice cap margins (kill dates) define when ice advanced across the site, killing the moss, and remained over the site until the year of their collection. In an earlier study, we reported 94 last millennium radiocarbon dates on in situ dead moss collected at ice cap margins across Baffin Island, Arctic Canada. Tight clustering of those ages indicated an abrupt onset of the Little Ice Age at ∼1240 CE and further expansion at ∼1480 CE coincident with episodes of major explosive volcanism. Here we test the confidence in kill dates as reliable predictors of expanding ice caps by resampling two previously densely sampled ice complexes ∼15 years later after ∼250 m of ice recession. The probability density functions (PDFs) of the more recent series of ages match PDFs of the earlier series but with a larger fraction of early Common Era ages. Post 2005 CE ice recession has exposed relict ice caps that grew during earlier Common Era advances and were preserved beneath later ice cap growth. We compare the 106 kill dates from the two ice complexes with 80 kill dates from 62 other ice caps within 250 km of the two densely sampled ice complexes. The PDFs of kill dates from the 62 other ice caps cluster in the same time windows as those from the two ice complexes alone, with the PDF of all 186 kill dates documenting episodes of widespread ice expansion restricted almost exclusively to 250–450 CE, 850–1000 CE, and a dense early Little Ice Age cluster with peaks at ∼1240 and ∼1480 CE. Ice continued to expand after 1480 CE, reaching maximum dimensions at ∼1880 CE that are still visible as zones of sparse vegetation cover in remotely sensed imagery. Intervals of widespread ice cap expansion coincide with persistent decreases in mean summer surface air temperature for the region in a Community Earth System Model (CESM) fully coupled Common Era simulation, suggesting the primary forcings of the observed snowline lowering were both modest declines in summer insolation and cooling resulting from explosive volcanism, most likely intensified by positive feedbacks from increased snow cover and sea ice and reduced northward heat transport by the oceans. The clusters of ice cap expansion defined by moss kill dates are mirrored in an annually resolved Common Era record of ice cap dimensions in Iceland, suggesting this is a circum-North-Atlantic–Arctic climate signal for the Common Era. During the coldest century of the Common Era, 1780–1880 CE, ice caps mantled &gt;11 000 km2 of north-central Baffin Island, whereas &lt;100 km2 is glaciated at present. The peak Little Ice Age state approached conditions expected during the inception phase of an ice age and was only reversed after 1880 CE by anthropogenic alterations of the planetary energy balance.</p
    corecore