7 research outputs found

    Using research to prepare for outbreaks of severe acute respiratory infection

    Get PDF

    Epidemiological Patterns of Seasonal Respiratory Viruses during the COVID-19 Pandemic in Madagascar, March 2020–May 2022

    No full text
    Three epidemic waves of coronavirus disease-19 (COVID-19) occurred in Madagascar from March 2020 to May 2022, with a positivity rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of 21% to 33%. Our study aimed to identify the impact of COVID-19 on the epidemiology of seasonal respiratory viruses (RVs) in Madagascar. We used two different specimen sources (SpS). First, 2987 nasopharyngeal (NP) specimens were randomly selected from symptomatic patients between March 2020 and May 2022 who tested negative for SARS-CoV-2 and were tested for 14 RVs by multiplex real-time PCR. Second, 6297 NP specimens were collected between March 2020 and May 2022 from patients visiting our sentinel sites of the influenza sentinel network. The samples were tested for influenza, respiratory syncytial virus (RSV), and SARS-CoV-2. From SpS-1, 19% (569/2987) of samples tested positive for at least one RV. Rhinovirus (6.3%, 187/2987) was the most frequently detected virus during the first two waves, whereas influenza predominated during the third. From SpS-2, influenza, SARS-CoV-2, and RSV accounted for 5.4%, 24.5%, and 39.4% of the detected viruses, respectively. During the study period, we observed three different RV circulation profiles. Certain viruses circulated sporadically, with increased activity in between waves of SARS-CoV-2. Other viruses continued to circulate regardless of the COVID-19 situation. Certain viruses were severely disrupted by the spread of SARS-CoV-2. Our findings underline the importance and necessity of maintaining an integrated disease surveillance system for the surveillance and monitoring of RVs of public health interest

    Monitoring for outbreak associated excess mortality in an African city: Detection limits in Antananarivo, Madagascar

    No full text
    Objectives Quantitative estimates of the impact of infectious disease outbreaks are required to develop measured policy responses. In many low- and middle-income countries, inadequate surveillance and incompleteness of death registration are important barriers. Design Here, we characterize how large an impact on mortality would have to be to be detectable using the uniquely detailed mortality notification data from the city of Antananarivo, Madagascar, with application to a recent measles outbreak. Results The weekly mortality rate of children during the 2018–2019 measles outbreak was 161% above the expected value at its peak, and the signal can be detected earlier in children than in the general population. This approach to detecting anomalies from expected baseline mortality allows us to delineate the prevalence of COVID-19 at which excess mortality would be detectable with the existing death notification system in Antananarivo. Conclusions Given current age-specific estimates of the COVID-19 fatality ratio and the age structure of the population in Antananarivo, we estimate that as few as 11 deaths per week in the 60–70 years age group (corresponding to an infection rate of approximately 1%) would detectably exceed the baseline. Data from 2020 will undergo necessary processing and quality control in the coming months. Our results provide a baseline for interpreting this information

    Excess mortality associated with the COVID-19 pandemic during the 2020 and 2021 waves in Antananarivo, Madagascar

    No full text
    Introduction COVID-19-associated mortality remains difficult to estimate in sub-Saharan Africa because of the lack of comprehensive systems of death registration. Based on death registers referring to the capital city of Madagascar, we sought to estimate the excess mortality during the COVID-19 pandemic and calculate the loss of life expectancy.Methods Death records between 2016 and 2021 were used to estimate weekly excess mortality during the pandemic period. To infer its synchrony with circulation of SARS-CoV-2, a cross-wavelet analysis was performed. Life expectancy loss due to the COVID-19 pandemic was calculated by projecting mortality rates using the Lee and Carter model and extrapolating the prepandemic trends (1990–2019). Differences in life expectancy at birth were disaggregated by cause of death.Results Peaks of excess mortality in 2020–21 were associated with waves of COVID-19. Estimates of all-cause excess mortality were 38.5 and 64.9 per 100 000 inhabitants in 2020 and 2021, respectively, with excess mortality reaching ≥50% over 6 weeks. In 2021, we quantified a drop of 0.8 and 1.0 years in the life expectancy for men and women, respectively attributable to increased risks of death beyond the age of 60 years.Conclusion We observed high excess mortality during the pandemic period, in particular around the peaks of SARS-CoV-2 circulation in Antananarivo. Our study highlights the need to implement death registration systems in low-income countries to document true toll of a pandemic

    Using research to prepare for outbreaks of severe acute respiratory infection

    No full text
    Severe acute respiratory infections (SARI) remain one of the leading causes of mortality around the world in all age groups. There is large global variation in epidemiology, clinical management and outcomes, including mortality. We performed a short period observational data collection in critical care units distributed globally during regional peak SARI seasons from 1 January 2016 until 31 August 2017, using standardised data collection tools. Data were collected for 1 week on all admitted patients who met the inclusion criteria for SARI, with follow-up to hospital discharge. Proportions of patients across regions were compared for microbiology, management strategies and outcomes. Regions were divided geographically and economically according to World Bank definitions. Data were collected for 682 patients from 95 hospitals and 23 countries. The overall mortality was 9.5%. Of the patients, 21.7% were children, with case fatality proportions of 1% for those less than 5 years. The highest mortality was in those above 60 years, at 18.6%. Case fatality varied by region: East Asia and Pacific 10.2% (21 of 206), Sub-Saharan Africa 4.3% (8 of 188), South Asia 0% (0 of 35), North America 13.6% (25 of 184), and Europe and Central Asia 14.3% (9 of 63). Mortality in low-income and low-middle-income countries combined was 4% as compared with 14% in high-income countries. Organ dysfunction scores calculated on presentation in 560 patients where full data were available revealed Sequential Organ Failure Assessment (SOFA) scores on presentation were significantly associated with mortality and hospital length of stay. Patients in East Asia and Pacific (48%) and North America (24%) had the highest SOFA scores of >12. Multivariable analysis demonstrated that initial SOFA score and age were independent predictors of hospital survival. There was variability across regions and income groupings for the critical care management and outcomes of SARI. Intensive care unit-specific factors, geography and management features were less reliable than baseline severity for predicting ultimate outcome. These findings may help in planning future outbreak severity assessments, but more globally representative data are required

    Using research to prepare for outbreaks of severe acute respiratory infection

    No full text
    Abstract Severe acute respiratory infections (SARI) remain one of the leading causes of mortality around the world in all age groups. There is large global variation in epidemiology, clinical management and outcomes, including mortality. We performed a short period observational data collection in critical care units distributed globally during regional peak SARI seasons from 1 January 2016 until 31 August 2017, using standardised data collection tools. Data were collected for 1 week on all admitted patients who met the inclusion criteria for SARI, with follow-up to hospital discharge. Proportions of patients across regions were compared for microbiology, management strategies and outcomes. Regions were divided geographically and economically according to World Bank definitions. Data were collected for 682 patients from 95 hospitals and 23 countries. The overall mortality was 9.5%. Of the patients, 21.7% were children, with case fatality proportions of 1% for those less than 5 years. The highest mortality was in those above 60 years, at 18.6%. Case fatality varied by region: East Asia and Pacific 10.2% (21 of 206), Sub-Saharan Africa 4.3% (8 of 188), South Asia 0% (0 of 35), North America 13.6% (25 of 184), and Europe and Central Asia 14.3% (9 of 63). Mortality in low-income and low-middle-income countries combined was 4% as compared with 14% in high-income countries. Organ dysfunction scores calculated on presentation in 560 patients where full data were available revealed Sequential Organ Failure Assessment (SOFA) scores on presentation were significantly associated with mortality and hospital length of stay. Patients in East Asia and Pacific (48%) and North America (24%) had the highest SOFA scores of >12. Multivariable analysis demonstrated that initial SOFA score and age were independent predictors of hospital survival. There was variability across regions and income groupings for the critical care management and outcomes of SARI. Intensive care unit-specific factors, geography and management features were less reliable than baseline severity for predicting ultimate outcome. These findings may help in planning future outbreak severity assessments, but more globally representative data are required
    corecore