68 research outputs found

    A Method for Unsupervised Semi-Quantification of Inmunohistochemical Staining with Beta Divergences

    Get PDF
    In many research laboratories, it is essential to determine the relative expression levels of some proteins of interest in tissue samples. The semi-quantitative scoring of a set of images consists of establishing a scale of scores ranging from zero or one to a maximum number set by the researcher and assigning a score to each image that should represent some predefined characteristic of the IHC staining, such as its intensity. However, manual scoring depends on the judgment of an observer and therefore exposes the assessment to a certain level of bias. In this work, we present a fully automatic and unsupervised method for comparative biomarker quantification in histopathological brightfield images. The method relies on a color separation method that discriminates between two chromogens expressed as brown and blue colors robustly, independent of color variation or biomarker expression level. For this purpose, we have adopted a two-stage stain separation approach in the optical density space. First, a preliminary separation is performed using a deconvolution method in which the color vectors of the stains are determined after an eigendecomposition of the data. Then, we adjust the separation using the non-negative matrix factorization method with beta divergences, initializing the algorithm with the matrices resulting from the previous step. After that, a feature vector of each image based on the intensity of the two chromogens is determined. Finally, the images are annotated using a systematically initialized k-means clustering algorithm with beta divergences. The method clearly defines the initial boundaries of the categories, although some flexibility is added. Experiments for the semi-quantitative scoring of images in five categories have been carried out by comparing the results with the scores of four expert researchers yielding accuracies that range between 76.60% and 94.58%. These results show that the proposed automatic scoring system, which is definable and reproducible, produces consistent results.FEDER / Junta de Andalucía-Consejería de Economía y Conocimiento US-1264994Fondo de Desarrollo (FEDER). Unión Europea PGC2018-096244-B-I00, SAF2016-75442-RMinisterio de Economía, Industria y Competitividad (MINECO). España TEC2017- 82807-

    Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

    Get PDF
    Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme

    Catalytical Properties of Free and Immobilized Aspergillus niger Tannase

    Get PDF
    A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methyl gallate as substrates. KM and Vmax values for free enzyme were very similar for both substrates. But, after immobilization, KM and Vmax values increased drastically using tannic acid as substrate. These results indicated that immobilized tannase is a better biocatalyst than free enzyme for applications on liquid systems with high tannin content, such as bioremediation of tannery or olive-mill wastewater

    Autophagy induced by Helicobacter pylori infection is necessary for gastric cancer stem cell emergence

    Get PDF
    Background: The main cause of gastric cancer is the infection by the bacterium Helicobacter pylori which induces a chronic inflammation and an epithelial-to-mesenchymal transition (EMT) leading to the emergence of cells with cancer stem cell (CSC) properties. However, the underlying mechanisms have not been fully characterized. Moreover, H. pylori modulates the host cell autophagic process, but a few studies have investigated the role of this process in tumoral transformation. The aim of this study was to determine whether H. pylori-induced autophagy has a role in CSC emergence. Methods: Autophagic flux in response to H. pylori infection was characterized in AGS cell line expressing the tandem-tagged mCherry-GFP-LC3 protein and using a ratiometric flow cytometry analysis. Then, AGS and MKN45 cell lines were treated with bafilomycin or chloroquine, two pharmaceutical well-known inhibitors of autophagy, and different EMT and CSC characteristics were analyzed. Results: First, a co-expression of the gastric CSC marker CD44 and the autophagic marker LC3 in mice and human stomach tissues infected with H. pylori was observed. Then, we demonstrated in vitro that H. pylori was able to activate the autophagy process with a reduced autophagic flux. Finally, infected cells were treated with autophagy inhibitors, which reduced (i) appearance of mesenchymal phenotypes and migration ability related to EMT and (ii) CD44 expression as well as tumorsphere formation capacities reflecting CSC properties. Conclusion: In conclusion, all these data show that H. pylori-induced autophagy is implicated in gastric CSC emergence and could represent an interesting therapeutic target.This work was supported by the French foundation Ligue contre le Cancer (Pyrénées Atlantiques)

    Impacts of a hydroinfiltrator rainwater harvesting system on soil moisture regime and groundwater distribution for olive groves in semi-arid Mediterranean regions

    Get PDF
    Dry periods in semi-arid regions constitute one of the greatest hazardous features that agriculture faces. This study investigates the effects of using a new device called ‘Hydroinfiltrator Rainwater Harvesting System (HRHS) on the water balance of soils. It was designed for arid and semi-arid zones affected by long periods of drought punctuated by heavy rainstorms. The new hydroinfiltrator consists of a net-like shell filled mainly with biochar. It is cylindrical in shape, is placed vertically and is half-buried in the soil around the crop tree to facilitate the infiltration of rainwater, irrigation or runoff water deep into the soil. The experimental plot is located in Baena (Córdoba, southern Spain) in an olive grove where the hydroinfiltrator was installed in 90 olive trees while 10 were left as a control group. In the xeric climate (bordering on arid), typical of the region, soils without a hydroinfiltrator have had a low infiltration rate, which reduces the effectiveness of precipitation and significantly increases the risk of water erosion. The effects of infiltration assisted by the device were analysed by simulating a torrential rain in which 600 L of water were passed through the hydroinfiltrator on an olive tree which had been installed 3 years previously. Geophysical methods (electrical resistivity tomography, ERT), direct analyses of soil samples, both in situ and in the laboratory, and theoretical flow models indicated a very significant increase in soil moisture (which nearly tripled in respect to the control group) because water was absorbed into the soil quickly, preventing runoff and water erosion. The soil moisture at 20 cm depth was 2.97 times higher with the HRHS than in the control plots. In addition, olive production increased by 211% and was higher in fat yield by 177%. Moreover, the resistivity profiles, taken by ERT showed that the water that entered the soil accumulated in the root zone of the olive tree, encouraged by the preferential pathways created by the roots and away from the surface, which prevented rapid evaporation during the high temperatures of spring and summer. Here we show for the first time that the use of the hydroinfiltrator rainwater harvesting system represents a significant improvement in the use of scarce water resources caused by climate change, providing agronomic and environmental benefits for rainfed, Mediterranean agricultural systems

    N7-methylguanosine methylation of tRNAs regulates survival to stress in cancer

    Get PDF
    Tumour progression and therapy tolerance are highly regulated and complex processes largely dependent on the plasticity of cancer cells and their capacity to respond to stress. The higher plasticity of cancer cells highlights the need for identifying targetable molecular pathways that challenge cancer cell survival. Here, we show that

    Two parallel pathways connect glutamine metabolism and mTORC1 activity to regulate glutamoptosis.

    Get PDF
    Glutamoptosis is the induction of apoptotic cell death as a consequence of the aberrant activation of glutaminolysis and mTORC1 signaling during nutritional imbalance in proliferating cells. The role of the bioenergetic sensor AMPK during glutamoptosis is not defined yet. Here, we show that AMPK reactivation blocks both the glutamine-dependent activation of mTORC1 and glutamoptosis in vitro and in vivo. We also show that glutamine is used for asparagine synthesis and the GABA shunt to produce ATP and to inhibit AMPK, independently of glutaminolysis. Overall, our results indicate that glutamine metabolism is connected with mTORC1 activation through two parallel pathways: an acute alpha-ketoglutarate-dependent pathway; and a secondary ATP/AMPK-dependent pathway. This dual metabolic connection between glutamine and mTORC1 must be considered for the future design of therapeutic strategies to prevent cell growth in diseases such as cancer.This work was supported by funds from the following institutions: Agencia Estatal de Investigación/European Regional Development Fund, European Union (PGC2018-096244- B-I00, SAF2016-75442-R), Ministry of Science, Innovation and Universities of Spain, Spanish National Research Council—CSIC, Institut National de la Santé et de la Recherche Médicale —INSERM, Université de Bordeaux, Fondation pour la Recherche Médicale, the Conseil Régional d’Aquitaine, SIRIC-BRIO, Fondation ARC, and Institut Européen de Chimie et Biologie. C.B. was recipient of fellowships from the Minister of Higher Education, Research and Innovation (France) and the Fondation ARC (France). We thank Prof. Patricia Boya (Centro de Investigaciones Biologicas, Madrid, Spain) for kindly providing with the ATG5+/+ and ATG5−/− MEFs. We thank Prof. Benoit Viollet (Institute Cochin, Paris, France) for kindly providing with the AMPK+/+ and AMPK−/− MEFs, and the CA-AMPK plasmid

    White Paper 4: Challenges In Biomedicine & Health

    Get PDF
    Publicado en Madrid, 231 p. ; 17 cm.A lesson that we have learned from the pandemia caused by coronavirus is that solutions in health require coordinated actions. Beside this and other emerging and re-emerging infectious diseases, millions of Europeans are suffering a plethora of disorders that are currently acquiring epidemic dimensions, including cancer, rare diseases, pain and food allergies, among others. New tools for prevention, diagnosis and treatment need to be urgently designed and implemented using new holistic and multidisciplinary approaches at three different levels (basic research, translational/clinical and public/social levels) and involving researchers, clinicians, industry and all stakeholders in the health system. The CSIC is excellently positioned to lead and coordinate these challenges in Biomedicine and Health.Peer reviewe

    Downregulation of Glutamine Synthetase, not glutaminolysis, is responsible for glutamine addiction in Notch1-driven acute lymphoblastic leukemia

    Get PDF
    The cellular receptor Notch1 is a central regulator of T-cell development, and as a consequence, Notch1 pathway appears upregulated in > 65% of the cases of T-cell acute lymphoblastic leukemia (T-ALL). However, strategies targeting Notch1 signaling render only modest results in the clinic due to treatment resistance and severe side effects. While many investigations reported the different aspects of tumor cell growth and leukemia progression controlled by Notch1, less is known regarding the modifications of cellular metabolism induced by Notch1 upregulation in T-ALL. Previously, glutaminolysis inhibition has been proposed to synergize with anti-Notch therapies in T-ALL models. In this work, we report that Notch1 upregulation in T-ALL induced a change in the metabolism of the important amino acid glutamine, preventing glutamine synthesis through the downregulation of glutamine synthetase (GS). Downregulation of GS was responsible for glutamine addiction in Notch1-driven T-ALL both in vitro and in vivo. Our results also confirmed an increase in glutaminolysis mediated by Notch1. Increased glutaminolysis resulted in the activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway, a central controller of cell growth. However, glutaminolysis did not play any role in Notch1-induced glutamine addiction. Finally, the combined treatment targeting mTORC1 and limiting glutamine availability had a synergistic effect to induce apoptosis and to prevent Notch1-driven leukemia progression. Our results placed glutamine limitation and mTORC1 inhibition as a potential therapy against Notch1-driven leukemia.This work was supported by funds from the followinginstitutions: Agencia Estatal de Investigacion/Euro-pean Regional Development Fund, European Union(PGC2018-096244-B-I00, SAF2016-75442-R), Ministryof Science, Innovation and Universities of Spain,Spanish National Research Council—CSIC, InstitutNational de la Sante et de la Recherche Medicale—INSERM, Ligue Contre le Cancer—Gironde, Univer-site de Bordeaux, Fondation pour la Recherche Medi-cale, the Conseil Regional d’Aquitaine, SIRIC-BRIO,Fondation ARC and Institut Europeen de Chimie etBiologie. MJN was supported by a bourse d’excellencede la Federation Wallonie-Bruxelles (WBI) and a post-doctoral fellowship from Fondation ARC. We thankVincent Pitard (Flow Cytometry Platform, Universitede Bordeaux, France) for technical assistance in flowcytometry experiments. We thank Diana Cabrera(Metabolomics Platform, CIC bioGUNE, Spain) fortechnical assistance in metabolomics analysi

    EDUCACIÓN AMBIENTAL Y SOCIEDAD. SABERES LOCALES PARA EL DESARROLLO Y LA SUSTENTABILIDAD

    Get PDF
    Este texto contribuye al análisis científico de varias áreas del conocimiento como la filosofía social, la patología, la educación para el cuidado del medio ambiente y la sustentabilidad que inciden en diversas unidades de aprendizaje de la Licenciatura en Educación para la Salud y de la Maestría en Sociología de la SaludLas comunidades indígenas de la sierra norte de Oaxaca México, habitan un territorio extenso de biodiversidad. Sin que sea una área protegida y sustentable, la propia naturaleza de la región ofrece a sus visitantes la riqueza de la vegetación caracterizada por sus especies endémicas que componen un paisaje de suma belleza
    corecore