111,398 research outputs found

    Flow-distributed spikes for Schnakenberg kinetics

    Get PDF
    This is the post-print version of the final published paper. The final publication is available at link.springer.com by following the link below. Copyright @ 2011 Springer-Verlag.We study a system of reaction–diffusion–convection equations which combine a reaction–diffusion system with Schnakenberg kinetics and the convective flow equations. It serves as a simple model for flow-distributed pattern formation. We show how the choice of boundary conditions and the size of the flow influence the positions of the emerging spiky patterns and give conditions when they are shifted to the right or to the left. Further, we analyze the shape and prove the stability of the spikes. This paper is the first providing a rigorous analysis of spiky patterns for reaction-diffusion systems coupled with convective flow. The importance of these results for biological applications, in particular the formation of left–right asymmetry in the mouse, is indicated.RGC of Hong Kon

    Factorizations of Elements in Noncommutative Rings: A Survey

    Full text link
    We survey results on factorizations of non zero-divisors into atoms (irreducible elements) in noncommutative rings. The point of view in this survey is motivated by the commutative theory of non-unique factorizations. Topics covered include unique factorization up to order and similarity, 2-firs, and modular LCM domains, as well as UFRs and UFDs in the sense of Chatters and Jordan and generalizations thereof. We recall arithmetical invariants for the study of non-unique factorizations, and give transfer results for arithmetical invariants in matrix rings, rings of triangular matrices, and classical maximal orders as well as classical hereditary orders in central simple algebras over global fields.Comment: 50 pages, comments welcom

    Chains of large gaps between primes

    Full text link
    Let pnp_n denote the nn-th prime, and for any k1k \geq 1 and sufficiently large XX, define the quantity Gk(X):=maxpn+kXmin(pn+1pn,,pn+kpn+k1), G_k(X) := \max_{p_{n+k} \leq X} \min( p_{n+1}-p_n, \dots, p_{n+k}-p_{n+k-1} ), which measures the occurrence of chains of kk consecutive large gaps of primes. Recently, with Green and Konyagin, the authors showed that G1(X)logXloglogXloglogloglogXlogloglogX G_1(X) \gg \frac{\log X \log \log X\log\log\log\log X}{\log \log \log X} for sufficiently large XX. In this note, we combine the arguments in that paper with the Maier matrix method to show that Gk(X)1k2logXloglogXloglogloglogXlogloglogX G_k(X) \gg \frac{1}{k^2} \frac{\log X \log \log X\log\log\log\log X}{\log \log \log X} for any fixed kk and sufficiently large XX. The implied constant is effective and independent of kk.Comment: 16 pages, no figure

    Optical alignment and spinning of laser-trapped microscopic particles

    Get PDF
    Light-induced rotation of absorbing microscopic particles by transfer of angular momentum from light to the material raises the possibility of optically driven micromachines. The phenomenon has been observed using elliptically polarized laser beams or beams with helical phase structure. But it is difficult to develop high power in such experiments because of overheating and unwanted axial forces, limiting the achievable rotation rates to a few hertz. This problem can in principle be overcome by using transparent particles, transferring angular momentum by a mechanism first observed by Beth in 1936, when he reported a tiny torque developed in a quartz waveplate due to the change in polarization of transmitted light. Here we show that an optical torque can be induced on microscopic birefringent particles of calcite held by optical tweezers. Depending on the polarization of the incident beam, the particles either become aligned with the plane of polarization (and thus can be rotated through specified angles) or spin with constant rotation frequency. Because these microscopic particles are transparent, they can be held in three-dimensional optical traps at very high power without heating. We have observed rotation rates in excess of 350 Hz.Comment: 4 pages, 4 figure

    The phytosociological analysis of saline area of Tehsil Ferozewala, District Sheikhupura (Punjab), Pakistan

    Get PDF
    This study is a broad ecological survey, and classification of the vegetation of Agro Farm plantations of a Tehsil Ferozewala (District Sheikhupura) Punjab, Pakistan. The vegetation survey description and classification was according to Zurich-Montpellier School of thought is based on over 300 Relevé Method. In all twelve associations i.e. Suaedetum fruticosae, Kochietum indicum Diplachnetum fuscae, Desmostochyetum bipinnatae, maurorae, Polypogaetum monspeliensae, Erythraeo-Polypogaetum monspeliensae, Veteviarietum cylindrieae, Scirpetum maritimae and Typhetum angustitae are recognized and each association is further sub-divided into sub-associations and classified into its respective class, order and alliances according to central European Phyto-sociological methods. Several relationships of the plant community types have been worked out during this study. The soil characteristics of each vegetation type are discussed in relation to soil texture; pH, Conductivity, Carbonates, Bicarbonates, Chlorides and Sulphate as well as ecological affinities of each association are also described. By reintegrating these trees and shrubs back into agriculture landscape to reverse salinity such as Atriplex amnicla, Tamarix aphylla, Phoenix dactilifera, Prosopis spp. Susbenia bispinasa, Sesbenia sesbena, Casorina, Grewia asiatie, Psidium guava etc. The incorporation of these plants (grasses, shrubs and trees) into agriculture land system of the Punjab has potential to increase crop, fiber, wood and animal production and degradation of land will also be halted.Key words: Phyto-sociological, agroforestry, relev’es, plant associations, characteristic species, differential species, companion species

    Methods and a research agenda for the evaluation of event sequence visualization techniques

    Get PDF
    The present paper asks how can visualization help data scientists make sense of event sequences, and makes three main contributions. The first is a research agenda, which we divide into methods for presentation, interaction & computation, and scale-up. Second, we introduce the concept of Event Maps to help with scale-up, and illustrate coarse-, medium- and fine-grained Event Maps with electronic health record (EHR) data for prostate cancer. Third, in an experiment we investigated participants’ ability to judge the similarity of event sequences. Contrary to previous research into categorical data, color and shape were better than position for encoding event type. However, even with simple sequences (5 events of 3 types in the target sequence), participants only got 88% correct despite averaging 7.4 seconds to respond. This indicates that simple visualization techniques are not effective
    corecore