993 research outputs found

    Does the Potential for Chaos Constrain the Embryonic Cell-Cycle Oscillator?

    Get PDF
    Although many of the core components of the embryonic cell-cycle network have been elucidated, the question of how embryos achieve robust, synchronous cellular divisions post-fertilization remains unexplored. What are the different schemes that could be implemented by the embryo to achieve synchronization? By extending a cell-cycle model previously developed for embryos of the frog Xenopus laevis to include the spatial dimensions of the embryo, we establish a novel role for the rapid, fertilization-initiated calcium wave that triggers cell-cycle oscillations. Specifically, in our simulations a fast calcium wave results in synchronized cell cycles, while a slow wave results in full-blown spatio-temporal chaos. We show that such chaos would ultimately lead to an unpredictable patchwork of cell divisions across the embryo. Given this potential for chaos, our results indicate a novel design principle whereby the fast calcium-wave trigger following embryo fertilization synchronizes cell divisions

    Lambda and Antilambda polarization from deep inelastic muon scattering

    Full text link
    We report results of the first measurements of Lambda and Antilambda polarization produced in deep inelastic polarized muon scattering on the nucleon. The results are consistent with an expected trend towards positive polarization with increasing x_F. The polarizations of Lambda and Antilambda appear to have opposite signs. A large negative polarization for Lambda at low positive x_F is observed and is not explained by existing models.A possible interpretation is presented.Comment: 9 pages, 2 figure

    Receptor-Induced Dilatation in the Systemic and Intrarenal Adaptation to Pregnancy in Rats

    Get PDF
    Normal pregnancy is associated with systemic and intrarenal vasodilatation resulting in an increased glomerular filtration rate. This adaptive response occurs in spite of elevated circulating levels of angiotensin II (Ang II). In the present study, we evaluated the potential mechanisms responsible for this adaptation. The reactivity of the mesangial cells (MCs) cultured from 14-day-pregnant rats to Ang II was measured through changes in the intracellular calcium concentration ([Cai]). The expression levels of inducible nitric oxide synthase (iNOS), the Ang II-induced vasodilatation receptor AT2, and the relaxin (LGR7) receptor were evaluated in cultured MCs and in the aorta, renal artery and kidney cortex by real time-PCR. The intrarenal distribution of LGR7 was further analyzed by immunohistochemistry. The MCs displayed a relative insensitivity to Ang II, which was paralleled by an impressive increase in the expression level of iNOS, AT2 and LGR7. These results suggest that the MCs also adapt to the pregnancy, thereby contributing to the maintenance of the glomerular surface area even in the presence of high levels of Ang II. The mRNA expression levels of AT2 and LGR7 also increased in the aorta, renal artery and kidney of the pregnant animals, whereas the expression of the AT1 did not significantly change. This further suggests a role of these vasodilatation-induced receptors in the systemic and intrarenal adaptation during pregnancy. LGR7 was localized in the glomeruli and on the apical membrane of the tubular cells, with stronger labeling in the kidneys of pregnant rats. These results suggest a role of iNOS, AT2, and LGR7 in the systemic vasodilatation and intrarenal adaptation to pregnancy and also suggest a pivotal role for relaxin in the tubular function during gestation

    Involvement of integrin-linked kinase in capillary/tube-like network formation of human vascular endothelial cells

    Get PDF
    Angiogenesis is a complex process involving an ECM and vascular endothelial cells (EC), and is regulated by various angiogenic factors including VEGF. The ability to form a capillary/tube-like network is a specialized function of EC. Therefore, in vitro angiogenesis was assessed by a capillary/tube-like network formation assay. There are three angiogenic parameters: capillary length, number of capillaries, and relative capillary area per field. We evaluated capillary length per field in the assay. VEGF promoted capillary/tube-like network formation of EC in a type I collagen gel matrix in vitro. Moreover, we demonstrated the involvement of ILK in a VEGF signaling pathway mediating capillary/tube-like network formation of EC using dominant-negative, kinase deficient ILK. This is a straightforward assay to monitor responses of human vascular endothelial cells

    Relaxin, a pleiotropic vasodilator for the treatment of heart failure

    Get PDF
    Relaxin is a naturally occurring peptide hormone that plays a central role in the hemodynamic and renovascular adaptive changes that occur during pregnancy. Triggering similar changes could potentially be beneficial in the treatment of patients with heart failure. The effects of relaxin include the production of nitric oxide, inhibition of endothelin, inhibition of angiotensin II, production of VEGF, and production of matrix metalloproteinases. These effects lead to systemic and renal vasodilation, increased arterial compliance, and other vascular changes. The recognition of this has led to the study of relaxin for the treatment of heart failure. An initial pilot study has shown favorable hemodynamic effects in patients with heart failure, including reduction in ventricular filling pressures and increased cardiac output. The ongoing RELAX-AHF clinical program is designed to evaluate the effects of relaxin on the symptoms and outcomes in a large group of patients admitted to hospital for acute heart failure. This review will summarize both the biology of relaxin and the data supporting its potential efficacy in human heart failure

    Biosignals reflect pair-dynamics in collaborative work : EDA and ECG study of pair-programming in a classroom environment

    Get PDF
    Collaboration is a complex phenomenon, where intersubjective dynamics can greatly affect the productive outcome. Evaluation of collaboration is thus of great interest, and can potentially help achieve better outcomes and performance. However, quantitative measurement of collaboration is difficult, because much of the interaction occurs in the intersubjective space between collaborators. Manual observation and/or self-reports are subjective, laborious, and have a poor temporal resolution. The problem is compounded in natural settings where task-activity and response-compliance cannot be controlled. Physiological signals provide an objective mean to quantify intersubjective rapport (as synchrony), but require novel methods to support broad deployment outside the lab. We studied 28 student dyads during a self-directed classroom pair-programming exercise. Sympathetic and parasympathetic nervous system activation was measured during task performance using electrodermal activity and electrocardiography. Results suggest that (a) we can isolate cognitive processes (mental workload) from confounding environmental effects, and (b) electrodermal signals show role-specific but correlated affective response profiles. We demonstrate the potential for social physiological compliance to quantify pair-work in natural settings, with no experimental manipulation of participants required. Our objective approach has a high temporal resolution, is scalable, non-intrusive, and robust.Peer reviewe

    Human Computer Interaction Meets Psychophysiology: A Critical Perspective

    Get PDF
    Human computer interaction (HCI) groups are more and more often exploring the utility of new, lower cost electroencephalography (EEG) interfaces for assessing user engagement and experience as well as for directly controlling computers. While the potential benefits of using EEG are considerable, we argue that research is easily driven by what we term naïve neurorealism. That is, data obtained with psychophysiological devices have poor reliability and uncertain validity, making inferences on mental states difficult. This means that unless sufficient care is taken to address the inherent shortcomings, the contributions of psychophysiological human computer interaction are limited to their novelty value rather than bringing scientific advance. Here, we outline the nature and severity of the reliability and validity problems and give practical suggestions for HCI researchers and reviewers on the way forward, and which obstacles to avoid. We hope that this critical perspective helps to promote good practice in the emerging field of psychophysiology in HCI

    Transcriptional Regulation Is a Major Controller of Cell Cycle Transition Dynamics

    Get PDF
    DNA replication, mitosis and mitotic exit are critical transitions of the cell cycle which normally occur only once per cycle. A universal control mechanism was proposed for the regulation of mitotic entry in which Cdk helps its own activation through two positive feedback loops. Recent discoveries in various organisms showed the importance of positive feedbacks in other transitions as well. Here we investigate if a universal control system with transcriptional regulation(s) and post-translational positive feedback(s) can be proposed for the regulation of all cell cycle transitions. Through computational modeling, we analyze the transition dynamics in all possible combinations of transcriptional and post-translational regulations. We find that some combinations lead to ‘sloppy’ transitions, while others give very precise control. The periodic transcriptional regulation through the activator or the inhibitor leads to radically different dynamics. Experimental evidence shows that in cell cycle transitions of organisms investigated for cell cycle dependent periodic transcription, only the inhibitor OR the activator is under cyclic control and never both of them. Based on these observations, we propose two transcriptional control modes of cell cycle regulation that either STOP or let the cycle GO in case of a transcriptional failure. We discuss the biological relevance of such differences

    Impact of small vessel disease in the brain on gait and balance

    Get PDF
    Gait and balance impairment is highly prevalent in older people. We aimed to assess whether and how single markers of small vessel disease (SVD) or a combination thereof explain gait and balance function in the elderly. We analysed 678 community-dwelling healthy subjects from the Lothian Birth Cohort 1936 at the age of 71–74 years who had undergone comprehensive risk factor assessment, gait and balance assessment as well as brain MRI. We investigated the impact of individual SVD markers (white matter hyperintensity – WMH, microbleeds, lacunes, enlarged perivascular spaces, brain atrophy) as seen on structural brain MRI and of a global SVD score on the patients’ performance. A regression model revealed that age, sex, and hypertension significantly explained gait speed. Among SVD markers white matter hyperintensity (WMH) score or volume were additional significant and independent predictors of gait speed in the regression model. A similar association was seen with the global SVD score. Our study confirms a negative impact of SVD-related morphologic brain changes on gait speed in addition to age, sex and hypertension independent from brain atrophy. The presence of WMH seems to be the major driving force for SVD on gait impairment in healthy elderly subjects
    corecore