110 research outputs found

    Candidate Glutamatergic Neurons in the Visual System of Drosophila

    Get PDF
    The visual system of Drosophila contains approximately 60,000 neurons that are organized in parallel, retinotopically arranged columns. A large number of these neurons have been characterized in great anatomical detail. However, studies providing direct evidence for synaptic signaling and the neurotransmitter used by individual neurons are relatively sparse. Here we present a first layout of neurons in the Drosophila visual system that likely release glutamate as their major neurotransmitter. We identified 33 different types of neurons of the lamina, medulla, lobula and lobula plate. Based on the previous Golgi-staining analysis, the identified neurons are further classified into 16 major subgroups representing lamina monopolar (L), transmedullary (Tm), transmedullary Y (TmY), Y, medulla intrinsic (Mi, Mt, Pm, Dm, Mi Am), bushy T (T), translobula plate (Tlp), lobula intrinsic (Lcn, Lt, Li), lobula plate tangential (LPTCs) and lobula plate intrinsic (LPi) cell types. In addition, we found 11 cell types that were not described by the previous Golgi analysis. This classification of candidate glutamatergic neurons fosters the future neurogenetic dissection of information processing in circuits of the fly visual system

    Subjective and objective measures

    Get PDF
    One of the greatest challenges in the study of emotions and emotional states is their measurement. The techniques used to measure emotions depend essentially on the authors’ definition of the concept of emotion. Currently, two types of measures are used: subjective and objective. While subjective measures focus on assessing the conscious recognition of one’s own emotions, objective measures allow researchers to quantify and assess the conscious and unconscious emotional processes. In this sense, when the objective is to evaluate the emotional experience from the subjective point of view of an individual in relation to a given event, then subjective measures such as self-report should be used. In addition to this, when the objective is to evaluate the emotional experience at the most unconscious level of processes such as the physiological response, objective measures should be used. There are no better or worse measures, only measures that allow access to the same phenomenon from different points of view. The chapter’s main objective is to make a survey of the main measures of evaluation of the emotions and emotional states more relevant in the current scientific panorama.info:eu-repo/semantics/acceptedVersio

    Search for the standard model Higgs boson at LEP

    Get PDF

    Should the poultry red mite Dermanyssus gallinae be of wider concern for veterinary and medical science?

    Get PDF
    The poultry red mite Dermanyssus gallinae is best known as a threat to the laying-hen industry; adversely affecting production and hen health and welfare throughout the globe, both directly and through its role as a disease vector. Nevertheless, D. gallinae is being increasingly implemented in dermatological complaints in non-avian hosts, suggesting that its significance may extend beyond poultry. The main objective of the current work was to review the potential of D. gallinae as a wider veterinary and medical threat. Results demonstrated that, as an avian mite, D. gallinae is unsurprisingly an occasional pest of pet birds. However, research also supports that these mites will feed from a range of other animals including: cats, dogs, rodents, rabbits, horses and man. We conclude that although reported cases of D. gallinae infesting mammals are relatively rare, when coupled with the reported genetic plasticity of this species and evidence of permanent infestations on non-avian hosts, potential for host-expansion may exist. The impact of, and mechanisms and risk factors for such expansion are discussed, and suggestions for further work made. Given the potential severity of any level of host-expansion in D. gallinae, we conclude that further research should be urgently conducted to confirm the full extent of the threat posed by D. gallinae to (non-avian) veterinary and medical sectors

    Defining the Sister Rat Mammary Tumor Cell Lines HH-16 cl.2/1 and HH-16.cl.4 as an In Vitro Cell Model for Erbb2

    Get PDF
    Cancer cell lines have been shown to be reliable tools in genetic studies of breast cancer, and the characterization of these lines indicates that they are good models for studying the biological mechanisms underlying this disease. Here, we describe the molecular cytogenetic/genetic characterization of two sister rat mammary tumor cell lines, HH-16 cl.2/1 and HH-16.cl.4, for the first time. Molecular cytogenetic analysis using rat and mouse chromosome paint probes and BAC/PAC clones allowed the characterization of clonal chromosome rearrangements; moreover, this strategy assisted in revealing detected breakpoint regions and complex chromosome rearrangements. This comprehensive cytogenetic analysis revealed an increase in the number of copies of the Mycn and Erbb2 genes in the investigated cell lines. To analyze its possible correlation with expression changes, relative RNA expression was assessed by real-time reverse transcription quantitative PCR and RNA FISH. Erbb2 was found to be overexpressed in HH-16.cl.4, but not in the sister cell line HH-16 cl.2/1, even though these lines share the same initial genetic environment. Moreover, the relative expression of Erbb2 decreased after global genome demethylation in the HH-16.cl.4 cell line. As these cell lines are commercially available and have been used in previous studies, the present detailed characterization improves their value as an in vitro cell model. We believe that the development of appropriate in vitro cell models for breast cancer is of crucial importance for revealing the genetic and cellular pathways underlying this neoplasy and for employing them as experimental tools to assist in the generation of new biotherapies

    Bursts and Isolated Spikes Code for Opposite Movement Directions in Midbrain Electrosensory Neurons

    Get PDF
    Directional selectivity, in which neurons respond strongly to an object moving in a given direction but weakly or not at all to the same object moving in the opposite direction, is a crucial computation that is thought to provide a neural correlate of motion perception. However, directional selectivity has been traditionally quantified by using the full spike train, which does not take into account particular action potential patterns. We investigated how different action potential patterns, namely bursts (i.e. packets of action potentials followed by quiescence) and isolated spikes, contribute to movement direction coding in a mathematical model of midbrain electrosensory neurons. We found that bursts and isolated spikes could be selectively elicited when the same object moved in opposite directions. In particular, it was possible to find parameter values for which our model neuron did not display directional selectivity when the full spike train was considered but displayed strong directional selectivity when bursts or isolated spikes were instead considered. Further analysis of our model revealed that an intrinsic burst mechanism based on subthreshold T-type calcium channels was not required to observe parameter regimes for which bursts and isolated spikes code for opposite movement directions. However, this burst mechanism enhanced the range of parameter values for which such regimes were observed. Experimental recordings from midbrain neurons confirmed our modeling prediction that bursts and isolated spikes can indeed code for opposite movement directions. Finally, we quantified the performance of a plausible neural circuit and found that it could respond more or less selectively to isolated spikes for a wide range of parameter values when compared with an interspike interval threshold. Our results thus show for the first time that different action potential patterns can differentially encode movement and that traditional measures of directional selectivity need to be revised in such cases

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior
    corecore