125 research outputs found

    Neutron halos in heavy nuclei -- relativistic mean field approach

    Get PDF
    Assuming a~simple spherical relativistic mean field model of the nucleus, we estimate the width of the antiproton--neutron annihilation (Γn\Gamma_n) and the width of antiproton--proton (Γp\Gamma_p) annihilation, in an antiprotonic atom system. This allows us to determine the halo factor ff, which is then discussed in the context of experimental data obtained in measurements recently done on LEAR utility at CERN. Another quantity which characterizes the deviation of the average nuclear densities ratio from the corresponding ratio of the homogeneous densities is introduced too. It was shown that it is also a good indicator of the neutron halo. The results are compared to experimental data as well as to the data of the simple liquid droplet model of the nuclear densities. The single particle structure of the nuclear density tail is discusssed also.Comment: revtex, 12 pages + 6 postscript figure

    Intestine-Specific, Oral Delivery of Captopril/Montmorillonite: Formulation and Release Kinetics

    Get PDF
    The intercalation of captopril (CP) into the interlayers of montmorillonite (MMT) affords an intestine-selective drug delivery system that has a captopril-loading capacity of up to ca. 14 %w/w and which exhibits near-zero-order release kinetics

    Automated protein resonance assignments of magic angle spinning solid-state NMR spectra of β1 immunoglobulin binding domain of protein G (GB1)

    Get PDF
    Magic-angle spinning solid-state NMR (MAS SSNMR) represents a fast developing experimental technique with great potential to provide structural and dynamics information for proteins not amenable to other methods. However, few automated analysis tools are currently available for MAS SSNMR. We present a methodology for automating protein resonance assignments of MAS SSNMR spectral data and its application to experimental peak lists of the β1 immunoglobulin binding domain of protein G (GB1) derived from a uniformly 13C- and 15N-labeled sample. This application to the 56 amino acid GB1 produced an overall 84.1% assignment of the N, CO, CA, and CB resonances with no errors using peak lists from NCACX 3D, CANcoCA 3D, and CANCOCX 4D experiments. This proof of concept demonstrates the tractability of this problem

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S
    corecore