245 research outputs found

    On RAF Sets and Autocatalytic Cycles in Random Reaction Networks

    Full text link
    The emergence of autocatalytic sets of molecules seems to have played an important role in the origin of life context. Although the possibility to reproduce this emergence in laboratory has received considerable attention, this is still far from being achieved. In order to unravel some key properties enabling the emergence of structures potentially able to sustain their own existence and growth, in this work we investigate the probability to observe them in ensembles of random catalytic reaction networks characterized by different structural properties. From the point of view of network topology, an autocatalytic set have been defined either in term of strongly connected components (SCCs) or as reflexively autocatalytic and food-generated sets (RAFs). We observe that the average level of catalysis differently affects the probability to observe a SCC or a RAF, highlighting the existence of a region where the former can be observed, whereas the latter cannot. This parameter also affects the composition of the RAF, which can be further characterized into linear structures, autocatalysis or SCCs. Interestingly, we show that the different network topology (uniform as opposed to power-law catalysis systems) does not have a significantly divergent impact on SCCs and RAFs appearance, whereas the proportion between cleavages and condensations seems instead to play a role. A major factor that limits the probability of RAF appearance and that may explain some of the difficulties encountered in laboratory seems to be the presence of molecules which can accumulate without being substrate or catalyst of any reaction.Comment: pp 113-12

    Synthetic organisms and living machines: Positioning the products of synthetic biology at the borderline between living and non-living matter

    Get PDF
    The difference between a non-living machine such as a vacuum cleaner and a living organism as a lion seems to be obvious. The two types of entities differ in their material consistence, their origin, their development and their purpose. This apparently clear-cut borderline has previously been challenged by fictitious ideas of “artificial organism” and “living machines” as well as by progress in technology and breeding. The emergence of novel technologies such as artificial life, nanobiotechnology and synthetic biology are definitely blurring the boundary between our understanding of living and non-living matter. This essay discusses where, at the borderline between living and non-living matter, we can position the future products of synthetic biology that belong to the two hybrid entities “synthetic organisms” and “living machines” and how the approaching realization of such hybrid entities affects our understanding of organisms and machines. For this purpose we focus on the description of three different types of synthetic biology products and the aims assigned to their realization: (1) synthetic minimal cells aimed at by protocell synthetic biology, (2) chassis organisms strived for by synthetic genomics and (3) genetically engineered machines produced by bioengineering. We argue that in the case of synthetic biology the purpose is more decisive for the categorization of a product as an organism or a machine than its origin and development. This has certain ethical implications because the definition of an entity as machine seems to allow bypassing the discussion about the assignment and evaluation of instrumental and intrinsic values, which can be raised in the case of organisms

    Imaging Oxygen Distribution in Marine Sediments. The Importance of Bioturbation and Sediment Heterogeneity

    Get PDF
    The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns:the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment–water interface

    ICD-10 coding algorithms for defining comorbidities of acute myocardial infarction

    Get PDF
    BACKGROUND: With the introduction of ICD-10 throughout Canada, it is important to ensure that Acute Myocardial Infarction (AMI) comorbidities employed in risk adjustment methods remain valid and robust. Therefore, we developed ICD-10 coding algorithms for nine AMI comorbidities, examined the validity of the ICD-10 and ICD-9 coding algorithms in detection of these comorbidities, and assessed their performance in predicting mortality. The nine comorbidities that we examined were shock, diabetes with complications, congestive heart failure, cancer, cerebrovascular disease, pulmonary edema, acute renal failure, chronic renal failure, and cardiac dysrhythmias. METHODS: Coders generated a comprehensive list of ICD-10 codes corresponding to each AMI comorbidity. Physicians independently reviewed and determined the clinical relevance of each item on the list. To ensure that the newly developed ICD-10 coding algorithms were valid in recording comorbidities, medical charts were reviewed. After assessing ICD-10 algorithms' validity, both ICD-10 and ICD-9 algorithms were applied to a Canadian provincial hospital discharge database to predict in-hospital, 30-day, and 1-year mortality. RESULTS: Compared to chart review data as a 'criterion standard', ICD-9 and ICD-10 data had similar sensitivities (ranging from 7.1 – 100%), and specificities (above 93.6%) for each of the nine AMI comorbidities studied. The frequencies for the comorbidities were similar between ICD-9 and ICD-10 coding algorithms for 49,861 AMI patients in a Canadian province during 1994 – 2004. The C-statistics for predicting 30-day and 1 year mortality were the same for ICD-9 (0.82) and for ICD-10 data (0.81). CONCLUSION: The ICD-10 coding algorithms developed in this study to define AMI comorbidities performed similarly as past ICD-9 coding algorithms in detecting conditions and risk-adjustment in our sample. However, the ICD-10 coding algorithms should be further validated in external databases

    Targeting RNA Polymerase Primary σ70 as a Therapeutic Strategy against Methicillin-Resistant Staphylococcus aureus by Antisense Peptide Nucleic Acid

    Get PDF
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) causes threatening infection-related mortality worldwide. Currently, spread of multi-drug resistance (MDR) MRSA limits therapeutic options and requires new approaches to "druggable" target discovery, as well as development of novel MRSA-active antibiotics. RNA polymerase primary σ⁷⁰ (encoded by gene rpoD) is a highly conserved prokaryotic factor essential for transcription initiation in exponentially growing cells of diverse S. aureus, implying potential for antisense inhibition. METHODOLOGY/PRINCIPAL FINDINGS: By synthesizing a serial of cell penetrating peptide conjugated peptide nucleic acids (PPNAs) based on software predicted parameters and further design optimization, we identified a target sequence (234 to 243 nt) within rpoD mRNA conserved region 3.0 being more sensitive to antisense inhibition. A (KFF)₃K peptide conjugated 10-mer complementary PNA (PPNA2332) was developed for potent micromolar-range growth inhibitory effects against four pathogenic S. aureus strains with different resistance phenotypes, including clinical vancomycin-intermediate resistance S. aureus and MDR-MRSA isolates. PPNA2332 showed bacteriocidal antisense effect at 3.2 fold of MIC value against MRSA/VISA Mu50, and its sequence specificity was demonstrated in that PPNA with scrambled PNA sequence (Scr PPNA2332) exhibited no growth inhibitory effect at higher concentrations. Also, PPNA2332 specifically interferes with rpoD mRNA, inhibiting translation of its protein product σ⁷⁰ in a concentration-dependent manner. Full decay of mRNA and suppressed expression of σ⁷⁰ were observed for 40 µM or 12.5 µM PPNA2332 treatment, respectively, but not for 40 µM Scr PPNA2332 treatment in pure culture of MRSA/VISA Mu50 strain. PPNA2332 (≥1 µM) essentially cleared lethal MRSA/VISA Mu50 infection in epithelial cell cultures, and eliminated viable bacterial cells in a time- and concentration- dependent manner, without showing any apparent toxicity at 10 µM. CONCLUSIONS: The present result suggested that RNAP primary σ⁷⁰ is a very promising candidate target for developing novel antisense antibiotic to treat severe MRSA infections

    Mitigation of Quantum Dot Cytotoxicity by Microencapsulation

    Get PDF
    When CdSe/ZnS-polyethyleneimine (PEI) quantum dots (QDs) are microencapsulated in polymeric microcapsules, human fibroblasts are protected from acute cytotoxic effects. Differences in cellular morphology, uptake, and viability were assessed after treatment with either microencapsulated or unencapsulated dots. Specifically, QDs contained in microcapsules terminated with polyethylene glycol (PEG) mitigate contact with and uptake by cells, thus providing a tool to retain particle luminescence for applications such as extracellular sensing and imaging. The microcapsule serves as the “first line of defense” for containing the QDs. This enables the individual QD coating to be designed primarily to enhance the function of the biosensor

    Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots

    Get PDF
    G-protein-coupled receptors mediate the biological effects of many hormones and neurotransmitters and are important pharmacological targets. They transmit their signals to the cell interior by interacting with G proteins. However, it is unclear how receptors and G proteins meet, interact and couple. Here we analyse the concerted motion of G-protein-coupled receptors and G proteins on the plasma membrane and provide a quantitative model that reveals the key factors that underlie the high spatiotemporal complexity of their interactions. Using two-colour, single-molecule imaging we visualize interactions between individual receptors and G proteins at the surface of living cells. Under basal conditions, receptors and G proteins form activity-dependent complexes that last for around one second. Agonists specifically regulate the kinetics of receptor-G protein interactions, mainly by increasing their association rate. We find hot spots on the plasma membrane, at least partially defined by the cytoskeleton and clathrin-coated pits, in which receptors and G proteins are confined and preferentially couple. Imaging with the nanobody Nb37 suggests that signalling by G-protein-coupled receptors occurs preferentially at these hot spots. These findings shed new light on the dynamic interactions that control G-protein-coupled receptor signalling

    Copy Number Alteration and Uniparental Disomy Analysis Categorizes Japanese Papillary Thyroid Carcinomas into Distinct Groups

    Get PDF
    The aim of the present study was to investigate chromosomal aberrations in sporadic Japanese papillary thyroid carcinomas (PTCs), concomitant with the analysis of oncogene mutational status. Twenty-five PTCs (11 with BRAFV600E, 4 with RET/PTC1, and 10 without mutation in HRAS, KRAS, NRAS, BRAF, RET/PTC1, or RET/PTC3) were analyzed using Genome-Wide Human SNP Array 6.0 which allows us to detect copy number alteration (CNA) and uniparental disomy (UPD), also referred to as copy neutral loss of heterozygosity, in a single experiment. The Japanese PTCs showed relatively stable karyotypes. Seven cases (28%) showed CNA(s), and 6 (24%) showed UPD(s). Interestingly, CNA and UPD were rarely overlapped in the same tumor; the only one advanced case showed both CNA and UPD with a highly complex karyotype. Thirteen (52%) showed neither CNA nor UPD. Regarding CNA, deletions tended to be more frequent than amplifications. The most frequent and recurrent region was the deletion in chromosome 22; however, it was found in only 4 cases (16%). The degree of genomic instability did not depend on the oncogene status. However, in oncogene-positive cases (BRAFV600E and RET/PTC1), tumors with CNA/UPD were less frequent (5/15, 33%), whereas tumors with CNA/UPD were more frequent in oncogene-negative cases (7/10, 70%), suggesting that chromosomal aberrations may play a role in the development of PTC, especially in oncogene-negative tumors. These data suggest that Japanese PTCs may be classified into three distinct groups: CNA+, UPD+, and no chromosomal aberrations. BRAFV600E mutational status did not correlate with any parameters of chromosomal defects
    corecore