1,109 research outputs found

    Elastomeric spring actuator using nylon wires

    Get PDF
    Medical devices are designed for collaboration with the human body, which makes the steps to create them increasingly more complex if the device is to be implanted. Soft robots have the unique potential of meeting both the mechanical compliance with the interacting tissues and the controlled functionality needed for a repair or replacement. Soft devices that fulfill fundamental mechanical roles are needed as parts of soft robots in order to carry out desired tasks. As the medical devices become increasingly low-profile, soft devices must feature multi-functionality that is embedded in the structure. A device embedded with nylon actuators allows for the controlled collapsing of an elastomeric spring by compression alone or compression and twisting. In this paper we present the concept of a novel elastomeric spring, its fabrication and mechanical characterization

    Higgs production as a probe of anomalous top couplings

    Full text link
    The LHC may be currently seeing the first hints of the Higgs boson. The dominant production mode for the Higgs at the LHC involves a top-quark loop. An accurate measurement of Higgs production cross-sections and decay widths can thus be used to obtain limits on anomalous top couplings. We find that such an exercise could potentially yield constraints that are stronger than those derived from low-energy observables as well as direct bounds expected from the top pair-production process.Comment: Version published in JHE

    NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data

    Get PDF
    Next generation sequencing (NGS) technologies provide a high-throughput means to generate large amount of sequence data. However, quality control (QC) of sequence data generated from these technologies is extremely important for meaningful downstream analysis. Further, highly efficient and fast processing tools are required to handle the large volume of datasets. Here, we have developed an application, NGS QC Toolkit, for quality check and filtering of high-quality data. This toolkit is a standalone and open source application freely available at http://www.nipgr.res.in/ngsqctoolkit.html. All the tools in the application have been implemented in Perl programming language. The toolkit is comprised of user-friendly tools for QC of sequencing data generated using Roche 454 and Illumina platforms, and additional tools to aid QC (sequence format converter and trimming tools) and analysis (statistics tools). A variety of options have been provided to facilitate the QC at user-defined parameters. The toolkit is expected to be very useful for the QC of NGS data to facilitate better downstream analysis

    Self-healing materials for soft-matter machines and electronics

    Get PDF
    The emergence of soft machines and electronics creates new opportunities to engineer robotic systems that are mechanically compliant, deformable, and safe for physical interaction with the human body. Progress, however, depends on new classes of soft multifunctional materials that can operate outside of a hard exterior and withstand the same real-world conditions that human skin and other soft biological materials are typically subjected to. As with their natural counterparts, these materials must be capable of self-repair and healing when damaged to maintain the longevity of the host system and prevent sudden or permanent failure. Here, we provide a perspective on current trends and future opportunities in self-healing soft systems that enhance the durability, mechanical robustness, and longevity of soft-matter machines and electronics

    Designing Origami-Adapted Deployable Modules for Soft Continuum Arms

    Get PDF
    © Springer Nature Switzerland AG 2019. Origami has several attractive attributes including deployability and portability which have been extensively adapted in designs of robotic devices. Drawing inspiration from foldable origami structures, this paper presents an engineering design process for fast making deployable modules of soft continuum arms. The process is illustrated with an example which adapts a modified accordion fold pattern to a lightweight deployable module. Kinematic models of the four-sided Accordion fold pattern is explored in terms of mechanism theory. Taking account of both the kinematic model and the materials selection, a 2D flat sheet model of the four-sided Accordion fold pattern is obtained for 3D printing. Following the design process, the deployable module is then fabricated by laminating 3D printed origami skeleton and flexible thermoplastic polyurethane (TPU) coated fabric. Preliminary tests of the prototype shown that the folding motion are enabled mainly by the flexible fabric between the gaps of thick panels of the origami skeleton and matches the kinematic analysis. The proposed approach has advantages of quick scaling dimensions, cost effective and fast fabricating thus allowing adaptive design according to specific demands of various tasks

    Dynamical Patterns of Cattle Trade Movements

    Get PDF
    Despite their importance for the spread of zoonotic diseases, our understanding of the dynamical aspects characterizing the movements of farmed animal populations remains limited as these systems are traditionally studied as static objects and through simplified approximations. By leveraging on the network science approach, here we are able for the first time to fully analyze the longitudinal dataset of Italian cattle movements that reports the mobility of individual animals among farms on a daily basis. The complexity and inter-relations between topology, function and dynamical nature of the system are characterized at different spatial and time resolutions, in order to uncover patterns and vulnerabilities fundamental for the definition of targeted prevention and control measures for zoonotic diseases. Results show how the stationarity of statistical distributions coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, on all timescales. Traditional static views of the displacement network hide important patterns of structural changes affecting nodes' centrality and farms' spreading potential, thus limiting the efficiency of interventions based on partial longitudinal information. By fully taking into account the longitudinal dimension, we propose a novel definition of dynamical motifs that is able to uncover the presence of a temporal arrow describing the evolution of the system and the causality patterns of its displacements, shedding light on mechanisms that may play a crucial role in the definition of preventive actions

    Dynamical Patterns of Cattle Trade Movements

    Get PDF
    Despite their importance for the spread of zoonotic diseases, our understanding of the dynamical aspects characterizing the movements of farmed animal populations remains limited as these systems are traditionally studied as static objects and through simplified approximations. By leveraging on the network science approach, here we are able for the first time to fully analyze the longitudinal dataset of Italian cattle movements that reports the mobility of individual animals among farms on a daily basis. The complexity and inter-relations between topology, function and dynamical nature of the system are characterized at different spatial and time resolutions, in order to uncover patterns and vulnerabilities fundamental for the definition of targeted prevention and control measures for zoonotic diseases. Results show how the stationarity of statistical distributions coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, on all timescales. Traditional static views of the displacement network hide important patterns of structural changes affecting nodes' centrality and farms' spreading potential, thus limiting the efficiency of interventions based on partial longitudinal information. By fully taking into account the longitudinal dimension, we propose a novel definition of dynamical motifs that is able to uncover the presence of a temporal arrow describing the evolution of the system and the causality patterns of its displacements, shedding light on mechanisms that may play a crucial role in the definition of preventive actions
    corecore