22 research outputs found

    The QCD phase diagram at nonzero quark density

    Get PDF
    We determine the phase diagram of QCD on the \mu-T plane for small to moderate chemical potentials. Two transition lines are defined with two quantities, the chiral condensate and the strange quark number susceptibility. The calculations are carried out on N_t =6,8 and 10 lattices generated with a Symanzik improved gauge and stout-link improved 2+1 flavor staggered fermion action using physical quark masses. After carrying out the continuum extrapolation we find that both quantities result in a similar curvature of the transition line. Furthermore, our results indicate that in leading order the width of the transition region remains essentially the same as the chemical potential is increased.Comment: 12 pages, 6 figure

    The sign problem across the QCD phase transition

    Full text link
    The average phase factor of the QCD fermion determinant signals the strength of the QCD sign problem. We compute the average phase factor as a function of temperature and baryon chemical potential using a two-flavor NJL model. This allows us to study the strength of the sign problem at and above the chiral transition. It is discussed how the UA(1)U_A(1) anomaly affects the sign problem. Finally, we study the interplay between the sign problem and the endpoint of the chiral transition.Comment: 9 pages and 9 fig

    Degenerate distributions in complex Langevin dynamics: one-dimensional QCD at finite chemical potential

    Full text link
    We demonstrate analytically that complex Langevin dynamics can solve the sign problem in one-dimensional QCD in the thermodynamic limit. In particular, it is shown that the contributions from the complex and highly oscillating spectral density of the Dirac operator to the chiral condensate are taken into account correctly. We find an infinite number of classical fixed points of the Langevin flow in the thermodynamic limit. The correct solution originates from a continuum of degenerate distributions in the complexified space.Comment: 20 pages, several eps figures, minor comments added, to appear in JHE

    A practical solution to the sign problem in a matrix model for dynamical compactification

    Full text link
    The matrix model formulation of superstring theory offers the possibility to understand the appearance of 4d space-time from 10d as a consequence of spontaneous breaking of the SO(10) symmetry. Monte Carlo studies of this issue is technically difficult due to the so-called sign problem. We present a practical solution to this problem generalizing the factorization method proposed originally by two of the authors (K.N.A. and J.N.). Explicit Monte Carlo calculations and large-N extrapolations are performed in a simpler matrix model with similar properties, and reproduce quantitative results obtained previously by the Gaussian expansion method. Our results also confirm that the spontaneous symmetry breaking indeed occurs due to the phase of the fermion determinant, which vanishes for collapsed configurations. We clarify various generic features of this approach, which would be useful in applying it to other statistical systems with the sign problem.Comment: 44 pages, 64 figures, v2: some minor typos correcte
    corecore