3,109 research outputs found

    Type Ia Supernova Scenarios and the Hubble Sequence

    Get PDF
    The dependence of the Type Ia supernova (SN Ia) rate on galaxy type is examined for three currently proposed scenarios: merging of a Chandrasekhar--mass CO white dwarf (WD) with a CO WD companion, explosion of a sub--Chandrasekhar mass CO WD induced by accretion of material from a He star companion, and explosion of a sub--Chandrasekhar CO WD in a symbiotic system. The variation of the SNe Ia rate and explosion characteristics with time is derived, and its correlation with parent population age and galaxy redshift is discussed. Among current scenarios, CO + He star systems should be absent from E galaxies. Explosion of CO WDs in symbiotic systems could account for the SNe Ia rate in these galaxies. The same might be true for the CO + CO WD scenario, depending on the value of the common envelope parameter. A testable prediction of the sub--Chandrasekhar WD model is that the average brightness and kinetic energy of the SN Ia events should increase with redshift for a given Hubble type. Also for this scenario, going along the Hubble sequence from E to Sc galaxies SNe Ia events should be brighter on average and should show larger mean velocities of the ejecta. The observational correlations strongly suggest that the characteristics of the SNe Ia explosion are linked to parent population age. The scenario in which WDs with masses below the Chandrasekhar mass explode appears the most promising one to explain the observed variation of the SN Ia rate with galaxy type together with the luminosity--expansion velocity trend.Comment: 16 pages uuencoded compressed Postscript, 2 figures included. ApJ Letters, in pres

    Confrontación de diversos métodos de ruptura sobre N-11, bacteria capaz de desarrollarse en medios deficientes en fósforo

    Get PDF
    Mediante el empleo de distintos métodos de ruptura de células bacterianas: ondas ultrasónicas, congelaciones y descongelaciones sucesivas y lisis enzimática, estudiamos su acción y rendimiento sobre la bacteria denominada N-11, caracterizada por su capacidad para desarrollarse en medios deficientes en fósforo. El empleo de ondas ultrasónicas ha resultado ser la técnica más eficaz de todas las ensayadas. La liberación de proteinas citoplasmáticas se muestra mínima ,en medios deficientes en fósforo (medio P).The desintegration of a special strain N-U -which shows a peculiar ability to grow on phosphorus defident media- with the use of different methods for d-esintegration ultrasonic waves. ice and thaw, and lysis enzymatic, wac studied. Ultrasonic waves was more efficient technique that other methods used. It also was shown than in P medium (a phosphorus deficient media) the protein release was minimum

    Structural basis for the inactivation of cytosolic DNA sensing by the vaccinia virus.

    Get PDF
    Detection of cytosolic DNA is a central element of the innate immunity system against viral infection. The Ku heterodimer, a component of the NHEJ pathway of DNA repair in the nucleus, functions as DNA sensor that detects dsDNA of viruses that replicate in the cytoplasm. Vaccinia virus expresses two proteins, C4 and C16, that inactivate DNA sensing and enhance virulence. The structural basis for this is unknown. Here we determine the structure of the C16 - Ku complex using cryoEM. Ku binds dsDNA by a preformed ring but C16 sterically blocks this access route, abrogating binding to a dsDNA end and its insertion into DNA-PK, thereby averting signalling into the downstream innate immunity system. C4 replicates these activities using a domain with 54% identity to C16. Our results reveal how vaccinia virus subverts the capacity of Ku to recognize viral DNA

    The End of Amnesia: A New Method for Measuring the Metallicity of Type Ia Supernova Progenitors Using Manganese Lines in Supernova Remnants

    Full text link
    We propose a new method to measure the metallicity of Type Ia supernova progenitors using Mn and Cr lines in the X-ray spectra of young supernova remnants. We show that the Mn to Cr mass ratio in Type Ia supernova ejecta is tightly correlated with the initial metallicity of the progenitor, as determined by the neutron excess of the white dwarf material before thermonuclear runaway. We use this correlation, together with the flux of the Cr and Mn Kalpha X-ray lines in the Tycho supernova remnant recently detected by Suzaku (Tamagawa et al. 2008) to derive a metallicity of log(Z) = -1.32 (+0.67,-0.33) for the progenitor of this supernova, which corresponds to log(Z/Zsun)= 0.60 (+0.31,-0.60) according to the latest determination of the solar metallicity by Asplund et al. (2005). The uncertainty in the measurement is large, but metallicities much smaller than the solar value can be confidently discarded. We discuss the implications of this result for future research on Type Ia supernova progenitors.Comment: 5 pages, 4 figures, accepted by ApJ

    Consistent estimates of (56)Ni yields for type Ia supernovae

    Get PDF
    We present (56)Ni mass estimates for seventeen well-observed type Ia supernovae determined by two independent methods. Estimates of the (56)Ni mass for each type Ia supernova are determined from (1) modeling of the late-time nebular spectrum and (2) through the combination of the peak bolometric luminosity with Arnett's rule. The attractiveness of this approach is that the comparison of estimated (56)Ni masses circumvents errors associated with the uncertainty in the adopted values of reddening and distance. We demonstrate that these two methods provide consistent estimates of the amount of (56)Ni synthesized. We also find a strong correlation between the derived (56)Ni mass and the absolute B-band magnitude (M(B)). Spectral synthesis can be used as a diagnostic to study the explosion mechanism. By obtaining more nebular spectra the Nif--M(B) correlation can be calibrated and can be used to investigate any potential systematic effects this relationship may have on the determination of cosmological parameters, and provide a new way to estimate extra-galactic distances of nearby type Ia supernovae.Comment: Accepted for publication in A&A, constructive comments welcome

    Biological behavior of familial papillary thyroid microcarcinoma: Spanish multicenter study

    Full text link
    Purpose Familial papillary thyroid microcarcinoma (FPTMC) can present a more aggressive behavior than the sporadic microcarcinoma. However, few studies have analyzed this situation. The objective is to analyze the recurrence rate of FPTMC and the prognostic factors which determine that recurrence in Spain. Methods Spanish multicenter longitudinal analytical observational study was conducted. Patients with FPTMC received treatment with curative intent and presented cure criteria 6 months after treatment. Recurrence rate and disease-free survival (DFS) were analyzed. Two groups were analyzed: group A (no tumor recurrence) vs. group B (tumor recurrence). Results Ninety-four patients were analyzed. During a mean follow-up of 73.3 +/- 59.3 months, 13 recurrences of FPTMC (13.83%) were detected and mean DFS was 207.9 +/- 11.5 months. There were multifocality in 56%, bilateral thyroid involvement in 30%, and vascular invasion in 7.5%; that is to say, they are tumors with histological factors of poor prognosis in a high percentage of cases. The main risk factors for recurrence obtained in the multivariate analysis were the tumor size (OR: 2.574, 95% CI 1.210-5.473; p = 0.014) and the assessment of the risk of recurrence of the American Thyroid Association (ATA), both intermediate risk versus low risk (OR: 125, 95% CI 10.638-1000; p < 0.001) and high risk versus low risk (OR: 45.454, 95% CI 5.405-333.333; p < 0.001). Conclusion FPTMC has a recurrence rate higher than sporadic cases. Poor prognosis is mainly associated with the tumor size and the risk of recurrence of the ATA

    Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger

    Get PDF
    On 2017 August 17, Swope Supernova Survey 2017a (SSS17a) was discovered as the optical counterpart of the binary neutron star gravitational wave event GW170817. We report time-series spectroscopy of SSS17a from 11.75 hours until 8.5 days after merger. Over the first hour of observations the ejecta rapidly expanded and cooled. Applying blackbody fits to the spectra, we measure the photosphere cooling from 11,000900+340011,000^{+3400}_{-900} K to 9300300+3009300^{+300}_{-300} K, and determine a photospheric velocity of roughly 30% of the speed of light. The spectra of SSS17a begin displaying broad features after 1.46 days, and evolve qualitatively over each subsequent day, with distinct blue (early-time) and red (late-time) components. The late-time component is consistent with theoretical models of r-process-enriched neutron star ejecta, whereas the blue component requires high velocity, lanthanide-free material.Comment: 33 pages, 5 figures, 2 tables, Accepted to Scienc

    Light Curves of the Neutron Star Merger GW170817/SSS17a: Implications for R-Process Nucleosynthesis

    Get PDF
    On 2017 August 17, gravitational waves were detected from a binary neutron star merger, GW170817, along with a coincident short gamma-ray burst, GRB170817A. An optical transient source, Swope Supernova Survey 17a (SSS17a), was subsequently identified as the counterpart of this event. We present ultraviolet, optical and infrared light curves of SSS17a extending from 10.9 hours to 18 days post-merger. We constrain the radioactively-powered transient resulting from the ejection of neutron-rich material. The fast rise of the light curves, subsequent decay, and rapid color evolution are consistent with multiple ejecta components of differing lanthanide abundance. The late-time light curve indicates that SSS17a produced at least ~0.05 solar masses of heavy elements, demonstrating that neutron star mergers play a role in r-process nucleosynthesis in the Universe.Comment: Accepted to Scienc

    Double-Peaked Balmer Emission Indicating Prompt Accretion Disk Formation in an X-Ray Faint Tidal Disruption Event

    Full text link
    We present the multi-wavelength analysis of the tidal disruption event (TDE) AT~2018hyz (ASASSN-18zj). From follow-up optical spectroscopy, we detect the first unambiguous case of resolved double-peaked Balmer emission in a TDE. The distinct line profile can be well-modelled by a low eccentricity (e0.1e\approx0.1) accretion disk extending out to \sim100 RpR_{p} and a Gaussian component originating from non-disk clouds, though a bipolar outflow origin cannot be completely ruled out. Our analysis indicates that in AT~2018hyz, disk formation took place promptly after the most-bound debris returned to pericenter, which we estimate to be roughly tens of days before the first detection. Redistribution of angular momentum and mass transport, possibly through shocks, must occur on the observed timescale of about a month to create the large \Ha-emitting disk that comprises \lesssim5\% of the initial stellar mass. With these new insights from AT~2018hyz, we infer that circularization is efficient in at least some, if not all optically-bright, X-ray faint TDEs. In these efficiently circularized TDEs, the detection of double-peaked emission depends on the disk inclination angle and the relative strength of the disk contribution to the non-disk component, possibly explaining the diversity seen in the current sample.Comment: 24 pages, 8 figures, 6 tables. Accepted for publication in Ap
    corecore