12 research outputs found

    Polyurethane composite adsorbent using solid phase extraction method for preconcentration of metal ion from aqueous solution

    Get PDF
    Polyurethane composite adsorbent polymeric material was prepared and investigated for selected solid-phase extraction for metal ions, prior to its determination by inductively coupled plasma optical emission spectrometry. The surface characterisation was done using Fourier transform infrared spectroscopy. The separation and preconcentration conditions of the analytes investigated includes influence of pH, sample loading flow rate, elution flow rate, type and concentration of eluents. The optimum pH for the highest efficient recoveries for all metal ions, which ranged from 70 to 85 %, is pH 7. The metal ions were quantitatively eluted with 5 mL of 2 mol/L HNO3. Common coexisting ions did not interfere with the separation. The percentage recovery of the metal ions ranged between 70 and 89 %, while the results for the limit of detection and limit of quantification ranged from 0.249 to 0.256 and 0.831 to 0.855, respectively. The experimental tests showed good preconcentration results of trace levels of metal ions using synthesised polyurethane polymer adsorbent composite

    Preparation and use of maize tassels’ activated carbon for the adsorption of phenolic compounds in environmental waste water samples

    Get PDF
    The determination and remediation of three phenolic compounds bisphenol A (BPA), ortho-nitrophenol (o-NTP), parachlorophenol (PCP) in wastewater is reported. The analysis of these molecules in wastewater was done using gas chromatography (GC) × GC time-of-flight mass spectrometry while activated carbon derived from maize tassel was used as an adsorbent. During the experimental procedures, the effect of various parameters such as initial concentration, pH of sample solution, eluent volume, and sample volume on the removal efficiency with respect to the three phenolic compounds was studied. The results showed that maize tassel produced activated carbon (MTAC) cartridge packed solid-phase extraction (SPE) system was able to remove the phenolic compounds effectively (90.84–98.49 %, 80.75–97.11 %, and 78.27–97.08 % for BPA, o-NTP, and PCP, respectively) . The MTAC cartridge packed SPE sorbent performance was compared to commercially produced C18 SPE cartridges and found to be comparable. All the parameters investigated were found to have a notable influence on the adsorption efficiency of the phenolic compounds from wastewaters at different magnitudes

    The Wide-field Spectroscopic Telescope (WST) Science White Paper

    Get PDF
    The Wide-field Spectroscopic Telescope (WST) is proposed as a new facility dedicated to the efficient delivery of spectroscopic surveys. This white paper summarises the initial concept as well as the corresponding science cases. WST will feature simultaneous operation of a large field-of-view (3 sq. degree), a high multiplex (20,000) multi-object spectrograph (MOS) and a giant 3x3 sq. arcmin integral field spectrograph (IFS). In scientific capability these requirements place WST far ahead of existing and planned facilities. Given the current investment in deep imaging surveys and noting the diagnostic power of spectroscopy, WST will fill a crucial gap in astronomical capability and work synergistically with future ground and space-based facilities. This white paper shows that WST can address outstanding scientific questions in the areas of cosmology; galaxy assembly, evolution, and enrichment, including our own Milky Way; origin of stars and planets; time domain and multi-messenger astrophysics. WST's uniquely rich dataset will deliver unforeseen discoveries in many of these areas. The WST Science Team (already including more than 500 scientists worldwide) is open to the all astronomical community. To register in the WST Science Team please visit https://www.wstelescope.com/for-scientists/participat

    Banana Peel Applied to the Solid Phase Extraction of Copper and Lead from River Water: Preconcentration of Metal Ions with a Fruit Waste

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)This article reports on an investigation into the ability of minced banana peel to extract lead and copper ions from water and the parameters involved in this process. The kinetics of copper and lead uptake reached equilibrium in 10 min and the extraction of metals ions was favorable above pH 3. The medium was characterized by FTIR, which showed absorption bands of carboxylic and amine groups at 1730 and 889 cm(1), respectively. The adsorption isotherm fitted by Langmuir's model showed maximum adsorption capacities of 0.33 and 0.20 mmol g(-1) (or 20.97 and 41.44 mg g(-1)) for Cu(II) and Pb(II), respectively. Minced banana peel was applied in the preconcentration system and showed approximately 20-fold enrichment factor and the column was I reused for 11 cycles without loss in the percentage of recovery. The proposed method was applied in the determination of Cu(II) and Pb(II) in a sample of raw river water and was validated by comparison with a standard reference material.50634463451Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP [06/54946-9
    corecore