516 research outputs found

    The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat

    Full text link
    We describe the SPIDER flight cryostat, which is designed to cool six millimeter-wavelength telescopes during an Antarctic long-duration balloon flight. The cryostat, one of the largest to have flown on a stratospheric payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6 K. Stainless steel capillaries facilitate a high flow impedance connection between the main liquid helium tank and a smaller superfluid tank, allowing the latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank. Each telescope houses a closed cycle helium-3 adsorption refrigerator that further cools the focal planes down to 300 mK. Liquid helium vapor from the main tank is routed through heat exchangers that cool radiation shields, providing negative thermal feedback. The system performed successfully during a 17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold time of 16.8 days, with 15.9 days occurring during flight.Comment: 15 pgs, 17 fig

    Radio continuum emission in the northern Galactic plane: Sources and spectral indices from the THOR survey

    Get PDF
    Radio continuum surveys of the Galactic plane can find and characterize HII regions, supernova remnants (SNRs), planetary nebulae (PNe), and extragalactic sources. A number of surveys at high angular resolution (<25") at different wavelengths exist to study the interstellar medium (ISM), but no comparable high-resolution and high-sensitivity survey exists at long radio wavelengths around 21cm. We observed a large fraction of the Galactic plane in the first quadrant of the Milky Way (l=14.0-67.4deg and |b| < 1.25deg) with the Karl G. Jansky Very Large Array (VLA) in the C-configuration covering six continuum spectral windows. These data provide a detailed view on the compact as well as extended radio emission of our Galaxy and thousands of extragalactic background sources. We used the BLOBCAT software and extracted 10916 sources. After removing spurious source detections caused by the sidelobes of the synthesised beam, we classified 10387 sources as reliable detections. We smoothed the images to a common resolution of 25" and extracted the peak flux density of each source in each spectral window (SPW) to determine the spectral indices α\alpha (assuming I(ν)ναI(\nu)\propto\nu^\alpha). By cross-matching with catalogs of HII regions, SNRs, PNe, and pulsars, we found radio counterparts for 840 HII regions, 52 SNRs, 164 PNe, and 38 pulsars. We found 79 continuum sources that are associated with X-ray sources. We identified 699 ultra-steep spectral sources (α<1.3\alpha < -1.3) that could be high-redshift galaxies. Around 9000 of the sources we extracted are not classified specifically, but based on their spatial and spectral distribution, a large fraction of them is likely to be extragalactic background sources. More than 7750 sources do not have counterparts in the SIMBAD database, and more than 3760 sources do not have counterparts in the NED database

    Cloud formation in the atomic and molecular phase: HI self absorption (HISA) towards a Giant Molecular Filament

    Get PDF
    Molecular clouds form from the atomic phase of the interstellar medium. However, characterizing the transition between the atomic and the molecular interstellar medium (ISM) is a difficult observational task. Here we address cloud formation processes by combining HSIA with molecular line data. One scenario proposed by numerical simulations is that the column density probability density functions (N-PDF) evolves from a log-normal shape at early times to a power-law-like shape at later times. In this paper, we study the cold atomic component of the giant molecular filament GMF38a (d=3.4 kpc, length230\sim230 pc). We identify an extended HISA feature, which is partly correlated with the 13CO emission. The peak velocities of the HISA and 13CO observations agree well on the eastern side of the filament, whereas a velocity offset of approximately 4 km s1^{-1} is found on the western side. The sonic Mach number we derive from the linewidth measurements shows that a large fraction of the HISA, which is ascribed to the cold neutral medium (CNM), is at subsonic and transonic velocities. The column density of the CNM is on the order of 1020^{20} to 1021^{21} cm2^{-2}. The column density of molecular hydrogen is an order of magnitude higher. The N-PDFs from HISA (CNM), HI emission (WNM+CNM), and 13CO (molecular component) are well described by log-normal functions, which is in agreement with turbulent motions being the main driver of cloud dynamics. The N-PDF of the molecular component also shows a power law in the high column-density region, indicating self-gravity. We suggest that we are witnessing two different evolutionary stages within the filament. The eastern subregion seems to be forming a molecular cloud out of the atomic gas, whereas the western subregion already shows high column density peaks, active star formation and evidence of related feedback processes

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model

    Tolerability of gefitinib in patients receiving treatment in everyday clinical practice

    Get PDF
    Gefitinib (‘Iressa’, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, has recently been approved in several countries for use in advanced or metastatic non-small-cell lung cancer (NSCLC). In contrast to chemotherapies, which are generally used at or near their maximum-tolerated dose (MTD), gefitinib is used at an optimal biological dose (250 mg day−1), which is substantially below its MTD, minimising the risk of adverse events without compromising efficacy. Tolerability data from the compassionate use of gefitinib in the ‘Iressa’ Expanded Access Programme support the favourable safety profile of the agent reported in Phase I and II trials. In both settings, the majority of adverse drug reactions were mild/moderate and consisted mainly of grade 1/2 diarrhoea and skin rash. Although skin rash has been suggested to predict response to gefitinib, available data do not support this hypothesis. Overall, these tolerability data demonstrate that gefitinib has a relatively benign side-effect profile and is a well-tolerated treatment option for patients with previously treated NCSLC, who currently have few alternatives

    Molecular design and control of fullerene-based bi-thermoelectric materials

    Get PDF
    Molecular junctions are a versatile test bed for investigating nanoscale thermoelectricity and contribute to the design of new cost-effective environmentally friendly organic thermoelectric materials. It was suggested that transport resonances associated with discrete molecular levels could play a key role in thermoelectric performance, but no direct experimental evidence has been reported. Here we study single-molecule junctions of the endohedral fullerene Sc3N@C8 connected to gold electrodes using a scanning tunnelling microscope. We find that the magnitude and sign of the thermopower depend strongly on the orientation of the molecule and on applied pressure. Our calculations show that Sc3N inside the fullerene cage creates a sharp resonance near the Fermi level, whose energetic location, and hence the thermopower, can be tuned by applying pressure. These results reveal that Sc3N@C80 is a bi-thermoelectric material, exhibiting both positive and negative thermopower, and provide an unambiguous demonstration of the importance of transport resonances in molecular junctions

    OH maser emission in the THOR survey of the northern Milky Way*

    Get PDF
    Context. OH masers trace diverse physical processes, from the expanding envelopes around evolved stars to star-forming regions or supernovae remnants. Providing a survey of the ground-state OH maser transitions in the northern hemisphere inner Milky Way facilitates the study of a broad range of scientific topics. Aims. We want to identify the ground-state OH masers at ∼18 cm wavelength in the area covered by The HI/OH/Recombination line survey of the Milky Way (THOR). We will present a catalogue of all OH maser features and their possible associated environments. Methods. The THOR survey covers longitude and latitude ranges of 14. ◦3 < l < 66. ◦8 and b < ± 1.◦25. All OH ground state lines 2Π3/2 (J = 3/2) at 1612 (F = 1−2), 1665 (F = 1−1), 1667 (F = 2−2) and 1720 MHz (F = 2−1) have been observed, employing the Very Large Array (VLA) in its C configuration. The spatial resolution of the data varies between 12.5" and 19", the spectral resolution is 1.5 km s−1, and the rms sensitivity of the data is ∼10 mJy beam−1 per channel. Results. We identify 1585 individual maser spots (corresponding to single spectral features) distributed over 807 maser sites (regions of size ∼103−104 AU). Based on different criteria from spectral profiles to literature comparison, we try to associate the maser sites with astrophysical source types. Approximately 51% of the sites exhibit the double-horned 1612 MHz spectra typically emitted from the expanding shells of evolved stars. The separations of the two main velocity features of the expanding shells typically vary between 22 and 38 km s−1. In addition to this, at least 20% of the maser sites are associated with star-forming regions. While the largest fraction of 1720 MHz maser spots (21 out of 53) is associated with supernova remnants, a significant fraction of the 1720 MHz maser spots (17) are also associated with star-forming regions. We present comparisons to the thermal 13CO(1–0) emission as well as to other surveys of class II CH3OH and H2O maser emission. The catalogue attempts to present associations to astrophysical sources where available, and the full catalogue is available in electronic form. Conclusions. This OH maser catalogue presents a unique resource of stellar and interstellar masers in the northern hemisphere. It provides the basis for a diverse range of follow-up studies from envelopes around evolved stars to star-forming regions and Supernova remnants
    corecore