1,040 research outputs found

    Exploring common stressors in physical education

    Get PDF
    Daily stressors, or hassles, refer to the everyday environmental demands that constitute a threat or challenge, or exceed an individual’s biological or psychological capacities (Cohen et al., 1995). Increasing evidence suggests that daily stressors have a significant impact on adolescents’ educational outcomes, for example, performance, wellbeing and negative attitudes toward school, however there is limited research examining the concept of common stressors in PE lessons. As early-adolescence is a developmental period associated with decreased engagement in PE, it is important to identify the environmental stressors that may be associated with increased disengagement. The study comprised 54 secondary school students and six PE teachers from five schools in the English Midlands. Semi-structured focus groups were conducted and a thematic analysis was applied to interview transcripts. Three higher order themes were identified from the data: the social environment, the physical and organisational environment, and the performance environment. Common stressors within the social environment included, interpersonal transactions between peers, differences in effort levels during PE, and working outside one’s peer group. Stressors within the physical and organisational environment consisted of, environmental situations within the changing facilities and the availability of activities. Finally, performance environment stressors included, situations involving the difficult acquisition of physical skills, and situations where physical appearance and physical competencies were exposed. The study extends previous findings by identifying potentially threatening and frustrating, environmental demands that have not been identified in the previous literature. The current study is the first to explore the typical stressors that are experienced by students in PE

    Learning and innovative elements of strategy adoption rules expand cooperative network topologies

    Get PDF
    Cooperation plays a key role in the evolution of complex systems. However, the level of cooperation extensively varies with the topology of agent networks in the widely used models of repeated games. Here we show that cooperation remains rather stable by applying the reinforcement learning strategy adoption rule, Q-learning on a variety of random, regular, small-word, scale-free and modular network models in repeated, multi-agent Prisoners Dilemma and Hawk-Dove games. Furthermore, we found that using the above model systems other long-term learning strategy adoption rules also promote cooperation, while introducing a low level of noise (as a model of innovation) to the strategy adoption rules makes the level of cooperation less dependent on the actual network topology. Our results demonstrate that long-term learning and random elements in the strategy adoption rules, when acting together, extend the range of network topologies enabling the development of cooperation at a wider range of costs and temptations. These results suggest that a balanced duo of learning and innovation may help to preserve cooperation during the re-organization of real-world networks, and may play a prominent role in the evolution of self-organizing, complex systems.Comment: 14 pages, 3 Figures + a Supplementary Material with 25 pages, 3 Tables, 12 Figures and 116 reference

    Metabolic state alters economic decision making under risk in humans

    Get PDF
    Background: Animals' attitudes to risk are profoundly influenced by metabolic state (hunger and baseline energy stores). Specifically, animals often express a preference for risky (more variable) food sources when below a metabolic reference point (hungry), and safe (less variable) food sources when sated. Circulating hormones report the status of energy reserves and acute nutrient intake to widespread targets in the central nervous system that regulate feeding behaviour, including brain regions strongly implicated in risk and reward based decision-making in humans. Despite this, physiological influences per se have not been considered previously to influence economic decisions in humans. We hypothesised that baseline metabolic reserves and alterations in metabolic state would systematically modulate decision-making and financial risk-taking in humans. Methodology/Principal Findings: We used a controlled feeding manipulation and assayed decision-making preferences across different metabolic states following a meal. To elicit risk-preference, we presented a sequence of 200 paired lotteries, subjects' task being to select their preferred option from each pair. We also measured prandial suppression of circulating acyl-ghrelin (a centrally-acting orexigenic hormone signalling acute nutrient intake), and circulating leptin levels (providing an assay of energy reserves). We show both immediate and delayed effects on risky decision-making following a meal, and that these changes correlate with an individual's baseline leptin and changes in acyl-ghrelin levels respectively. Conclusions/Significance: We show that human risk preferences are exquisitely sensitive to current metabolic state, in a direction consistent with ecological models of feeding behaviour but not predicted by normative economic theory. These substantive effects of state changes on economic decisions perhaps reflect shared evolutionarily conserved neurobiological mechanisms. We suggest that this sensitivity in human risk-preference to current metabolic state has significant implications for both real-world economic transactions and for aberrant decision-making in eating disorders and obesity

    Birthweight and risk markers for type 2 diabetes and cardiovascular disease in childhood: the Child Heart and Health Study in England (CHASE).

    Get PDF
    AIMS/HYPOTHESIS: Lower birthweight (a marker of fetal undernutrition) is associated with higher risks of type 2 diabetes and cardiovascular disease (CVD) and could explain ethnic differences in these diseases. We examined associations between birthweight and risk markers for diabetes and CVD in UK-resident white European, South Asian and black African-Caribbean children. METHODS: In a cross-sectional study of risk markers for diabetes and CVD in 9- to 10-year-old children of different ethnic origins, birthweight was obtained from health records and/or parental recall. Associations between birthweight and risk markers were estimated using multilevel linear regression to account for clustering in children from the same school. RESULTS: Key data were available for 3,744 (66%) singleton study participants. In analyses adjusted for age, sex and ethnicity, birthweight was inversely associated with serum urate and positively associated with systolic BP. After additional height adjustment, lower birthweight (per 100 g) was associated with higher serum urate (0.52%; 95% CI 0.38, 0.66), fasting serum insulin (0.41%; 95% CI 0.08, 0.74), HbA1c (0.04%; 95% CI 0.00, 0.08), plasma glucose (0.06%; 95% CI 0.02, 0.10) and serum triacylglycerol (0.30%; 95% CI 0.09, 0.51) but not with BP or blood cholesterol. Birthweight was lower among children of South Asian (231 g lower; 95% CI 183, 280) and black African-Caribbean origin (81 g lower; 95% CI 30, 132). However, adjustment for birthweight had no effect on ethnic differences in risk markers. CONCLUSIONS/INTERPRETATION: Birthweight was inversely associated with urate and with insulin and glycaemia after adjustment for current height. Lower birthweight does not appear to explain emerging ethnic difference in risk markers for diabetes

    A retrospective population based cohort study of access to specialist palliative care in the last year of life: who is still missing out a decade on?

    Get PDF
    Background: Historically, specialist palliative care has been accessed by a greater proportion of people dying with cancer compared to people with other life-limiting conditions. More recently, a variety of measures to improve access to palliative care for people dying from non-cancer conditions have been implemented. There are few rigorous population-based studies that document changes in palliative care service delivery relative to the number of patients who could benefit from such services. Method: A retrospective cohort study of the last year of life of persons with an underlying cause of death in 2009-10 from cancer, heart failure, renal failure, liver failure, chronic obstructive pulmonary disease, Alzheimer's disease, motor neurone disease, Parkinson's disease, Huntington's disease and/or HIV/AIDS. The proportion of decedents receiving specialist palliative care was compared to a 2000-02 cohort. Logistic regression models were used identify social and demographic factors associated with accessing specialist palliative care. Results: There were 12,817 deaths included into the cohort; 7166 (56 %) from cancer, 527 (4 %) from both cancer and non-cancer conditions and 5124 (40 %) from non-cancer conditions. Overall, 46.3 % of decedents received community and/or hospital based specialist palliative care; a 3.5 % (95 % CI 2.3-4.7) increase on specialist palliative care access reported ten years earlier. The majority (69 %; n?=?4928) of decedents with cancer accessed palliative care during the last year of life. Only 14 % (n?=?729) of decedents with non-cancer conditions accessed specialist palliative care, however, this represented a 6.1 % (95 % CI 4.9-7.3) increase on the specialist palliative care access reported for the same decedent group ten years earlier. Compared to decedents with heart failure, increased odds of palliative care access was observed for decedents with cancer (OR 10.5; 95 % CI 9.1-12.2), renal failure (OR 1.5; 95 % CI 1.3-1.9), liver failure (OR 2.3; 95 % CI 1.7-3.3) or motor neurone disease (OR 4.5; 95 % CI 3.1-6.6). Living in major cities, being female, having a partner and living in a private residence was associated with increased odds of access to specialist palliative care. CONCLUSION: There is small but significant increase in access to specialist palliative care services in Western Australia, specifically in patients dying with non-cancer conditions

    Controls on gut phosphatisation : the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah)

    Get PDF
    Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods--typically the most diverse fossilised organisms in Cambrian ecosystems--where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace

    Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates

    Full text link
    Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5 years) using invertebrate and vertebrate corpses.Once placed on mats,the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeric substances (EPS). This coverage provides a template for i) moulding superficial features, resulting in negative impressions, and ii) generating replicas.The impressions of fly setulae, fish scales and frog skin verrucae are shaped mainly by small cells in an EPS matrix. Microbes also replicate delicate structures such as the three successive layers that compose a fish eye.The sarcophagus protects the body integrity, allowing the persistence of inner organs such as the ovaries and digestive apparatus in flies,the swim bladder and muscles in fish, and the bone marrow in frog legs.This study brings strong experimental evidence to the idea that mats favour metazoan fossilization by moulding, replicating and delaying decay. Rapid burial has classically been invoked as a mechanism to explain exceptional preservation. However, mats may play a similar role during early fossilization as they can preserve complex features for a long timeThis work, which is part of the research projects CGL2013-42643P and the research grant supporting M. Iniesto were funded by the Spanish Ministry of Economy and Competitiveness. The SEM facility at IMPMC was supported by Region Ile de France grant SESAME 2006 I-07-593/R, INSU-CNRS, INP-CNRS, and University Pierre et Marie Curie, Paris. SEM analyses performed for this study were supported by a grant from the Foundation Simone et Cino Del Duca (PI: K. Benzerara). Some SEM observations were also conducted at SIdI UAM (Madrid). Environmental SEM observations were performed at the MNCN (Madrid

    Plasma and Erythrocyte Fatty Acid Patterns in Patients with Recurrent Depression: A Matched Case-Control Study

    Get PDF
    The polyunsaturated fatty acid (PUFA) composition of (nerve) cell membranes may be involved in the pathophysiology of depression. Studies so far, focussed mainly on omega-3 and omega-6 PUFAs. In the present study, saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and PUFAs of the omega-3, -6 and -9 series in plasma and erythrocytes of patients with recurrent major depressive disorder (MDD-R) were compared with controls.We carried out a case-control study. The sample consisted of 137 patients with MDD-R and 65 matched non-depressed controls. In plasma and erythrocytes of patients with MDD-R the concentrations of most of the SFAs and MUFAs, and additionally erythrocyte PUFAs, all with a chain length > 20 carbon (C) atoms, were significantly lower than in the controls. In contrast, the concentrations of most of the shorter chain members (< or = 18C) of the SFAs and MUFAs were significantly higher in the patients. Estimated activities of several elongases in plasma of patients were significantly altered, whereas delta-9 desaturase activity for C14:0 and C18:0 was significantly higher.The fatty acid status of patients with MDD-R not only differs with regard to omega-3 and omega-6 PUFAs, but also concerns other fatty acids. These alterations may be due to: differences in diet, changes in synthesizing enzyme activities, higher levels of chronic (oxidative) stress but may also result from adaptive strategies by providing protection against enhanced oxidative stress and production of free radicals

    Characterization and Expression of Glutamate Dehydrogenase in Response to Acute Salinity Stress in the Chinese Mitten Crab, Eriocheir sinensis

    Get PDF
    Glutamate dehydrogenase (GDH) is a key enzyme for the synthesis and catabolism of glutamic acid, proline and alanine, which are important osmolytes in aquatic animals. However, the response of GDH gene expression to salinity alterations has not yet been determined in macro-crustacean species.GDH cDNA was isolated from Eriocheir sinensis. Then, GDH gene expression was analyzed in different tissues from normal crabs and the muscle of crabs following transfer from freshwater (control) directly to water with salinities of 16‰ and 30‰, respectively. Full-length GDH cDNA is 2,349 bp, consisting of a 76 bp 5'- untranslated region, a 1,695 bp open reading frame encoding 564 amino acids and a 578 bp 3'- untranslated region. E. sinensis GDH showed 64-90% identity with protein sequences of mammalian and crustacean species. Muscle was the dominant expression source among all tissues tested. Compared with the control, GDH expression significantly increased at 6 h in crabs transferred to 16‰ and 30‰ salinity, and GDH expression peaked at 48 h and 12 h, respectively, with levels approximately 7.9 and 8.5 fold higher than the control. The free amino acid (FAA) changes in muscle, under acute salinity stress (16‰ and 30‰ salinities), correlated with GDH expression levels. Total FAA content in the muscle, which was based on specific changes in arginine, proline, glycine, alanine, taurine, serine and glutamic acid, tended to increase in crabs following transfer to salt water. Among these, arginine, proline and alanine increased significantly during salinity acclimation and accounted for the highest proportion of total FAA.E. sinensis GDH is a conserved protein that serves important functions in controlling osmoregulation. We observed that higher GDH expression after ambient salinity increase led to higher FAA metabolism, especially the synthesis of glutamic acid, which increased the synthesis of proline and alanine to meet the demand of osmoregulation at hyperosmotic conditions
    corecore