29 research outputs found

    Enhanced carbon pump inferred from relaxation of nutrient limitation in the glacial ocean

    Get PDF
    The modern Eastern Equatorial Pacific (EEP) Ocean is a large oceanic source of carbon to the atmosphere. Primary productivity over large areas of the EEP is limited by silicic acid and iron availability, and because of this constraint the organic carbon export to the deep ocean is unable to compensate for the outgassing of carbon dioxide that occurs through upwelling of deep waters. It has been suggested that the delivery of dust-borne iron to the glacial ocean, could have increased primary productivity and enhanced deep-sea carbon export in this region, lowering atmospheric carbon dioxide concentrations during glacial periods. Such a role for the EEP is supported by higher organic carbon burial rates documented in underlying glacial sediments but lower opal accumulation rates cast doubts on the importance of the EEP as an oceanic region for significant glacial carbon dioxide drawdown. Here we present a new silicon isotope record that suggests the paradoxical decline in opal accumulation rate in the glacial EEP results from a decrease in the silicon to carbon uptake ratio of diatoms under conditions of increased iron availability from enhanced dust input. Consequently, our study supports the idea of an invigorated biological pump in this region during the last glacial period that could have contributed to glacial carbon dioxide drawdown. Additionally, using evidence from silicon and nitrogen isotope changes, we infer that, in contrast to the modern situation, the biological productivity in this region is not constrained by the availability of iron, silicon and nitrogen during the glacial period. We hypothesize that an invigorated biological carbon dioxide pump constrained perhaps only by phosphorus limitation was a more common occurrence in low-latitude areas of the glacial ocean

    No iron fertilization in the equatorial Pacific Ocean during the last ice age

    Get PDF
    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron1. Greater atmospheric dust deposition2 could have fertilized the equatorial Pacific with iron during the last ice age—the Last Glacial Period (LGP) but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the 232Th proxy), phytoplankton productivity (using opal, 231Pa/230Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ15N) from six cores in the central equatorial Pacific for the Holocene (0–10,000 years ago) and the LGP (17,000–27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region7,8. Thus, ice-age iron fertilization in the Subantarctic Zone would have ultimately worked to lower, not raise, equatorial Pacific productivity

    Changes in ocean denitrification during Late Carboniferous glacial–interglacial cycles

    No full text
    Denitrification (the process by which nitrate and nitrite are reduced to nitrogen gas) in the oxygen-minimum zones of modern oceans is an important part of the global nitrogen cycle. Variations in rates of denitrification over Quaternary glacial-interglacial timescales may have affected global climate. Evidence of denitrification has been reported from some older marine systems, but it is unclear whether denitrification rates varied during pre-Quaternary glacial cycles. Here we present ratios of organic carbon to nitrogen and nitrogen isotope data from the Upper Carboniferous black shales of the North American mid-continent. In these cyclic deposits, we find evidence of variations in the intensity of denitrification in the eastern tropical Panthalassic Ocean associated with glacially driven sea-level changes. Sedimentary 15N increases during the interval of rapid sea-level rise in each cycle, indicative of intensified denitrification, before returning to background levels as sea level stabilized during the interglacial phase. Nearly identical patterns of denitrification have been observed in the eastern tropical Pacific during the Quaternary period. We therefore conclude that ice ages have produced similar oceanographic conditions and nitrogen cycle dynamics in these regions over the past 300 million years. © 2008 Macmillan Publishers Limited

    The impact of ocean deoxygenation on iron release from continental margin sediments

    No full text
    In the oceans’ high-nitrate–low-chlorophyll regions, such as the Peru/Humboldt Current system and the adjacent eastern equatorial Pacific1, primary productivity is limited by the micronutrient iron. Within the Peruvian upwelling area, bioavailable iron is released from the reducing continental margin sediments2. The magnitude of this seafloor source could change with fluctuations in the extension or intensity of the oxygen minimum zones3, 4. Here we show that measurements of molybdenum, uranium and iron concentrations can be used as a proxy for sedimentary iron release, and use this proxy to assess iron release from the sea floor beneath the Peru upwelling system during the past 140,000 years. We observe a coupling between levels of denitrification, as indicated by nitrogen isotopes, trace metal proxies for oxygenation, and sedimentary iron concentrations. Specifically, periods with poor upper ocean oxygenation are characterized by more efficient iron retention in the sediment and a diminished iron supply to the water column. We attribute efficient iron retention under more reducing conditions to widespread sulphidic conditions in the surface sediment and concomitant precipitation of iron sulphides. We argue that iron release from continental margin sediments is most effective in a narrow redox window where neither oxygen nor sulphide is present. We therefore suggest that future deoxygenation in the Peru upwelling area would be unlikely to result in increased iron availability, whereas in weaker oxygen minimum zones partial deoxygenation may enhance the iron supply

    Changes in North Atlantic nitrogen fixation controlled by ocean circulation

    No full text
    In the ocean, the chemical forms of nitrogen that are readily available for biological use (known collectively as ‘fixed’ nitrogen) fuel the global phytoplankton productivity that exports carbon to the deep ocean1, 2, 3. Accordingly, variation in the oceanic fixed nitrogen reservoir has been proposed as a cause of glacial–interglacial changes in atmospheric carbon dioxide concentration2, 3. Marine nitrogen fixation, which produces most of the ocean’s fixed nitrogen, is thought to be affected by multiple factors, including ocean temperature4 and the availability of iron2, 3, 5 and phosphorus6. Here we reconstruct changes in North Atlantic nitrogen fixation over the past 160,000?years from the shell-bound nitrogen isotope ratio (15N/14N) of planktonic foraminifera in Caribbean Sea sediments. The observed changes cannot be explained by reconstructed changes in temperature, the supply of (iron-bearing) dust or water column denitrification. We identify a strong, roughly 23,000-year cycle in nitrogen fixation and suggest that it is a response to orbitally driven changes in equatorial Atlantic upwelling7, which imports ‘excess’ phosphorus (phosphorus in stoichiometric excess of fixed nitrogen) into the tropical North Atlantic surface5, 6. In addition, we find that nitrogen fixation was reduced during glacial stages 6 and 4, when North Atlantic Deep Water had shoaled to become glacial North Atlantic intermediate water8, which isolated the Atlantic thermocline from excess phosphorus-rich mid-depth waters that today enter from the Southern Ocean. Although modern studies have yielded diverse views of the controls on nitrogen fixation1, 2, 4, 5, our palaeobiogeochemical data suggest that excess phosphorus is the master variable in the North Atlantic Ocean and indicate that the variations in its supply over the most recent glacial cycle were dominated by the response of regional ocean circulation to the orbital cycles
    corecore