129 research outputs found

    Identification of the Molecular Target of an Inducer of Human Glioblastoma Self-Destruction

    Get PDF
    Glioblastoma multiforme (GBM) is the most malignant form of brain cancer in adults with a very poor prognosis despite treatment. [1] The development of novel therapies for GBM is challenging due to its infiltrative nature, the heterogeneous and adaptive/drug-resistant character of GBM cells, and the blood brain barrier. [2] We discovered that the brain-penetrable small molecule KHS101 [3] selectively induces the self-destruction of molecularly-diverse, human patient-derived GBM cells by targeting specific metabolic vulnerabilities. Moreover, KHS101 is effective in orthotopic xenograft models. We identified the molecular target of KHS101 in GBMs through a combination of gene expression profiling/‘connectivity mapping’, metabolomics, and chemical proteomics. For the latter, we used a biologically active photo-reactive benzophenone probe (KHS101-BP). Photocrosslinking experiments using KHS101 BP in life cells allowed us to identify a molecular target with direct relevance to KHS101-induced GBM self-destruction. We subsequently developed KHS101 analogues and derivatives incorporating biotin or a fluorophore to enable biophysical characterisation of the interaction between KHS101 and its protein target. These tools may allow the development of assays for rapid screening/optimisation of new compounds for the treatment of GBM. [1] M. Preusser, S. De Ribaupierre, A. Wohrer, S. C. Erridge, Monika Hegi, M. Weller, and R. Stupp, Neurol. Prog., 2011, 70, 9–21. [2] S. K. Carlsson, S. P. Brothers, and C. Wahlestedt, EMBO Mol. Med., 2014, 6, 1359–1370. [3] H. Wurdak, S. Zhu, K. Hoon, L. Aimone, L. L. Lairson, and J. Watson, Proc. Natl. Acad. Sci. U.S.A., 2010, 107, 16542–22360

    Economical and scalable synthesis of 6-amino-2-cyanobenzothiazole

    Get PDF
    2-Cyanobenzothiazoles (CBTs) are useful building blocks for: 1) luciferin derivatives for bioluminescent imaging; and 2) handles for bioorthogonal ligations. A particularly versatile CBT is 6-amino-2-cyanobenzothiazole (ACBT), which has an amine handle for straight-forward derivatisation. Here we present an economical and scalable synthesis of ACBT based on a cyanation catalysed by 1,4-diazabicyclo[2.2.2]octane (DABCO), and discuss its advantages for scale-up over previously reported routes

    Remarkable Progress with Small-Molecule Modulation of TRPC1/4/5 Channels: Implications for Understanding the Channels in Health and Disease

    Get PDF
    Proteins of the TRPC family can form many homo- and heterotetrameric cation channels permeable to Na+, K+ and Ca2+. In this review, we focus on channels formed by the isoforms TRPC1, TRPC4 and TRPC5. We review evidence for the formation of different TRPC1/4/5 tetramers, give an overview of recently developed small-molecule TRPC1/4/5 activators and inhibitors, highlight examples of biological roles of TRPC1/4/5 channels in different tissues and pathologies, and discuss how high-quality chemical probes of TRPC1/4/5 modulators can be used to understand the involvement of TRPC1/4/5 channels in physiological and pathophysiological processes

    DogCatcher allows loop-friendly protein-protein ligation

    Get PDF
    There are many efficient ways to connect proteins at termini. However, connecting at a loop is difficult because of lower flexibility and variable environment. Here, we have developed DogCatcher, a protein that forms a spontaneous isopeptide bond with DogTag peptide. DogTag/DogCatcher was generated initially by splitting a Streptococcus pneumoniae adhesin. We optimized DogTag/DogCatcher through rational design and evolution, increasing reaction rate by 250-fold and establishing millimolar solubility of DogCatcher. When fused to a protein terminus, DogTag/DogCatcher reacts slower than SpyTag003/SpyCatcher003. However, inserted in loops of a fluorescent protein or enzyme, DogTag reacts much faster than SpyTag003. Like many membrane proteins, the ion channel TRPC5 has no surface-exposed termini. DogTag in a TRPC5 extracellular loop allowed normal calcium flux and specific covalent labeling on cells in 1 min. DogTag/DogCatcher reacts under diverse conditions, at nanomolar concentrations, and to 98% conversion. Loop-friendly ligation should expand the toolbox for creating protein architectures

    Human TRPC5 structures reveal interaction of a xanthine-based TRPC1/4/5 inhibitor with a conserved lipid binding site

    Get PDF
    TRPC1/4/5 channels are non-specific cation channels implicated in a wide variety of diseases, and TRPC1/4/5 inhibitors have recently entered clinical trials. However, fundamental and translational studies require a better understanding of TRPC1/4/5 channel regulation by endogenous and exogenous factors. Although several potent and selective TRPC1/4/5 modulators have been reported, the paucity of mechanistic insights into their modes-of-action remains a barrier to the development of new chemical probes and drug candidates. Xanthine-based modulators include the most potent and selective TRPC1/4/5 inhibitors described to date, as well as TRPC5 activators. Our previous studies suggest that xanthines interact with a, so far, elusive pocket of TRPC1/4/5 channels that is essential to channel gating. Here we report the structure of a small-molecule-bound TRPC1/4/5 channel—human TRPC5 in complex with the xanthine Pico145—to 3.0 Å. We found that Pico145 binds to a conserved lipid binding site of TRPC5, where it displaces a bound phospholipid. Our findings explain the mode-of-action of xanthine-based TRPC1/4/5 modulators, and suggest a structural basis for TRPC1/4/5 modulation by endogenous factors such as (phospho)lipids and Zn2+ ions. These studies lay the foundations for the structure-based design of new generations of TRPC1/4/5 modulators

    Pyrene tags for the detection of carbohydrates by label‐assisted laser desorption/ionisation mass spectrometry

    Get PDF
    Matrix‐assisted laser desorption/ionisation mass spectrometry (MALDI‐MS) is widely used for the analysis of biomolecules. Label‐assisted laser desorption/ionisation mass spectrometry (LALDI‐MS) is a matrix‐free variant of MALDI‐MS, in which only analytes covalently attached to a laser desorption/ionisation (LDI) enhancer are detected. LALDI‐MS has shown promise in overcoming the limitations of MALDI‐MS in terms of sample preparation and MS analysis. In this work, we have developed a series of pyrene‐based LDI reagents (LALDI tags) that can be used for labelling and LALDI‐MS analysis of reducing carbohydrates from complex (biological) samples without the need for additional chemical derivatisation or purification. We have systematically explored the suitability of four pyrene‐based LDI enhancers and three aldehyde‐reactive handles, optimised sample preparation, and demonstrated the use of LALDI tags for the detection of lactose. We have also exemplified the potential of LALDI tags for labelling carbohydrates in biological samples by direct detection of lactose in cow's milk. These results demonstrate that LALDI‐MS is a promising technique for the analysis of reducing carbohydrates in biological samples, and pave the way for the development of LALDI‐MS for glycomics and diagnostics

    Sialylation of campylobacter jejuni lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice

    Get PDF
    <p>Background: Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown.</p> <p>Methodology/Principal Findings: In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC.</p> <p>Conclusions/Significance: These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS</p&gt

    Picomolar, selective, and subtype-specific small-molecule inhibition of TRPC1/4/5 channels

    Get PDF
    The concentration of free cytosolic Ca(2+) and the voltage across the plasma membrane are major determinants of cell function. Ca(2+)-permeable non-selective cationic channels are known to regulate these parameters but understanding of these channels remains inadequate. Here we focus on Transient Receptor Potential Canonical 4 and 5 proteins (TRPC4 and TRPC5) which assemble as homomers or heteromerize with TRPC1 to form Ca(2+)-permeable non-selective cationic channels in many mammalian cell types. Multiple roles have been suggested including in epilepsy, innate fear, pain and cardiac remodeling but limitations in tools to probe these channels have restricted progress. A key question is whether we can overcome these limitations and develop tools which are high-quality, reliable, easy to use and readily accessible for all investigators. Here, through chemical synthesis and studies of native and over-expressed channels by Ca(2+) and patch-clamp assays, we describe compound 31 (C31), a remarkable small-molecule inhibitor of TRPC1/4/5 channels. Its potency ranged from 9 to 1300 pM, depending on the TRPC1/4/5 subtype and activation mechanism. Other channel types investigated were unaffected, including TRPC3, TRPC6, TRPV1, TRPV4, TRPA1, TRPM2, TRPM8 and store-operated Ca(2+) entry mediated by Orai1. These findings suggest identification of an important experimental tool compound which has much higher potency for inhibiting TRPC1/4/5 channels than previously reported agents, impressive specificity, and graded subtype selectivity within the TRPC1/4/5 channel family. The compound should greatly facilitate future studies of these ion channels. We suggest naming this TRPC1/4/5-inhibitory compound Pico145

    Schwarzinicine A inhibits transient receptor potential canonical channels and exhibits overt vasorelaxation effects

    Get PDF
    This study investigated the vasorelaxant effects of schwarzinicine A, an alkaloid recently reported from Ficus schwarzii Koord. Regulation of calcium homeostasis in vascular smooth muscle cells (VSMC) is viewed as one of the main mechanisms for controlling blood pressure. L-type voltage-gated calcium channel (VGCC) blockers are commonly used for controlling hypertension. Recently, the transient receptor potential canonical (TRPC) channels were found in blood vessels of different animal species with evidence of their roles in the regulation of vascular contractility. In this study, we studied the mechanism of actions of schwarzinicine A focusing on its regulation of L-type VGCC and TRPC channels. Schwarzinicine A exhibited the highest vasorelaxant effect (123.1%) compared to other calcium channel blockers. It also overtly attenuated calcium-induced contractions of the rat isolated aortae in a calcium-free environment showing its mechanism to inhibit calcium influx. Fluorometric intracellular calcium recordings confirmed its inhibition of hTRPC3-, hTRPC4-, hTRPC5- and hTRPC6-mediated calcium influx into HEK cells with IC50 values of 3, 17, 19 and 7 μM, respectively. The evidence gathered in this study suggests that schwarzinicine A blocks multiple TRPC channels and L-type VGCC to exert a significant vascular relaxation response
    corecore