1,970 research outputs found

    The Spatial Limitations of Current Neutral Models of Biodiversity

    Get PDF
    The unified neutral theory of biodiversity and biogeography is increasingly accepted as an informative null model of community composition and dynamics. It has successfully produced macro-ecological patterns such as species-area relationships and species abundance distributions. However, the models employed make many unrealistic auxiliary assumptions. For example, the popular spatially implicit version assumes a local plot exchanging migrants with a large panmictic regional source pool. This simple structure allows rigorous testing of its fit to data. In contrast, spatially explicit models assume that offspring disperse only limited distances from their parents, but one cannot as yet test the significance of their fit to data. Here we compare the spatially explicit and the spatially implicit model, fitting the most-used implicit model (with two levels, local and regional) to data simulated by the most-used spatially explicit model (where offspring are distributed about their parent on a grid according to either a radially symmetric Gaussian or a ‘fat-tailed’ distribution). Based on these fits, we express spatially implicit parameters in terms of spatially explicit parameters. This suggests how we may obtain estimates of spatially explicit parameters from spatially implicit ones. The relationship between these parameters, however, makes no intuitive sense. Furthermore, the spatially implicit model usually fits observed species-abundance distributions better than those calculated from the spatially explicit model's simulated data. Current spatially explicit neutral models therefore have limited descriptive power. However, our results suggest that a fatter tail of the dispersal kernel seems to improve the fit, suggesting that dispersal kernels with even fatter tails should be studied in future. We conclude that more advanced spatially explicit models and tools to analyze them need to be developed

    MicroRNA159 Can Act as a Switch or Tuning MicroRNA Independently of Its Abundance in Arabidopsis

    Get PDF
    The efficacy of gene silencing by plant microRNAs (miRNAs) is generally assumed to be predominantly determined by their abundance. In Arabidopsis the highly abundant miRNA, miR159, acts as a molecular “switch” in vegetative tissues completely silencing the expression of two GAMYB-like genes, MYB33 and MYB65. Here, we show that miR159 has a diminished silencing efficacy in the seed. Using reporter gene constructs, we determined that MIR159 and MYB33 are co-transcribed in the aleurone and embryo of germinating seeds. However in contrast to vegetative tissues, MYB33 is not completely silenced. Instead, miR159 appears to shape the spatio-temporal expression pattern of MYB33 during seed germination. Transcript profiling in a time course during seed germination in wild-type and a mir159 mutant in which miR159 is almost absent, revealed that transcript levels of the GAMYB-like genes were similar between these two genotypes during germination, but much higher in the mir159 mutant once germination had completed. This attenuation in the silencing of the GAMYB-like genes was not explained by a decrease in mature miR159 levels, which remained constant at all time points during seed germination. We propose that miR159 acts as a tuner of GAMYB-like levels in Arabidopsis germinating seeds and that the activity of this miRNA is attenuated in the seed compared to vegetative tissues. This implies that the efficacy of miRNA-mediated silencing is not solely determined by miRNA abundance and target transcript levels, but is being determined through additional mechanisms

    On The Potential of Minimal Flavour Violation

    Full text link
    Assuming the Minimal Flavour Violation hypothesis, we derive the general scalar potential for fields whose background values are the Yukawa couplings. We analyze the minimum of the potential and discuss the fine-tuning required to dynamically generate the mass hierarchies and the mixings between different quark generations. Two main cases are considered, corresponding to Yukawa interactions being effective operators of dimension five or six (or, equivalently, resulting from bi-fundamental and fundamental scalar fields, respectively). At the renormalizable and classical level, no mixing is naturally induced from dimension five Yukawa operators. On the contrary, from dimension six Yukawa operators one mixing angle and a strong mass hierarchy among the generations result.Comment: 33 pages, 6 figures; Note added in proof on the stability of the minima of the scalar potential; results unchanged; references adde

    Using the MitoB method to assess levels of reactive oxygen species in ecological studies of oxidative stress

    Get PDF
    In recent years evolutionary ecologists have become increasingly interested in the effects of reactive oxygen species (ROS) on the life-histories of animals. ROS levels have mostly been inferred indirectly due to the limitations of estimating ROS from in vitro methods. However, measuring ROS (hydrogen peroxide, H2O2) content in vivo is now possible using the MitoB probe. Here, we extend and refine the MitoB method to make it suitable for ecological studies of oxidative stress using the brown trout Salmo trutta as model. The MitoB method allows an evaluation of H2O2 levels in living organisms over a timescale from hours to days. The method is flexible with regard to the duration of exposure and initial concentration of the MitoB probe, and there is no transfer of the MitoB probe between fish. H2O2 levels were consistent across subsamples of the same liver but differed between muscle subsamples and between tissues of the same animal. The MitoB method provides a convenient method for measuring ROS levels in living animals over a significant period of time. Given its wide range of possible applications, it opens the opportunity to study the role of ROS in mediating life history trade-offs in ecological settings

    Gauged flavour symmetry for the light generations

    Full text link
    We study the phenomenology of a model where an SU(2)^3 flavour symmetry acting on the first two generation quarks is gauged and Yukawa couplings for the light generations are generated by a see-saw mechanism involving heavy fermions needed to cancel flavour-gauge anomalies. We find that, in constrast to the SU(3)^3 case studied in the literature, most of the constraints related to the third generation, like electroweak precision bounds or B physics observables, can be evaded, while characteristic collider signatures are predicted.Comment: 16 pages, 3 figure

    Vitamin food fortification today

    Get PDF
    Historically, food fortification has served as a tool to address population-wide nutrient deficiencies such as rickets by vitamin D fortified milk. This article discusses the different policy strategies to be used today. Mandatory or voluntary fortification and fortified foods, which the consumer needs, also have to comply with nutritional, regulatory, food safety and technical issues. The ‘worldwide map of vitamin fortification’ is analysed, including differences between develop and developing countries. The vitamins, folate and vitamin D, are taken as practical examples in the review of the beneficial effect of different strategies on public health. The importance of the risk–benefit aspect, as well as how to identify the risk groups, and the food vehicles for fortification is discussed

    The Universal One-Loop Effective Action

    Full text link
    We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.Comment: 30 pages, v2 contains additional comments and corrects typos, version accepted for publication in JHE

    Minimal flavour violation extensions of the seesaw

    Full text link
    We analyze the most natural formulations of the minimal lepton flavour violation hypothesis compatible with a type-I seesaw structure with three heavy singlet neutrinos N, and satisfying the requirement of being predictive, in the sense that all LFV effects can be expressed in terms of low energy observables. We find a new interesting realization based on the flavour group SU(3)e×SU(3)+NSU(3)_e\times SU(3)_{\ell+N} (being ee and \ell respectively the SU(2) singlet and doublet leptons). An intriguing feature of this realization is that, in the normal hierarchy scenario for neutrino masses, it allows for sizeable enhancements of μe\mu \to e transitions with respect to LFV processes involving the τ\tau lepton. We also discuss how the symmetries of the type-I seesaw allow for a strong suppression of the N mass scale with respect to the scale of lepton number breaking, without implying a similar suppression for possible mechanisms of N productionComment: 14 pages, 6 figure
    corecore