1,320 research outputs found

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Platelet kinetics after slow versus standard transfusions: A pilot study

    Get PDF
    Background. Platelet transfusion is required in the acute phase of some thrombocytopenic disorders in order to prevent potentially dangerous hemorrhages. The purpose of this study was to assess the increase in platelet count following a slow platelet transfusion. Methods. Patients suffering from thrombocytopenia due to various underlying diseases were enrolled in the prospective pilot feasibility trial and were randomly divided into two groups. Standard platelet transfusion was administered in one group, while slow transfusion was used in the other. The platelet count was examined at 1 hour, 24 hours, and 1 week following the transfusions. Results. Although the platelet count was higher following 1 hour after transfusion via the standard method, the count tended to be higher 1 week after the transfusion in the slow transfusion group. This difference, however, only turned out to be statistically significant amongst females. Conclusion. A therapy of slow platelet transfusion might be more effective for the prevention of platelet loss. Further studies will be required to strengthen this hypothesis

    Risk communication and informed consent in the medical tourism industry: A thematic content analysis of canadian broker websites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medical tourism, thought of as patients seeking non-emergency medical care outside of their home countries, is a growing industry worldwide. Canadians are amongst those engaging in medical tourism, and many are helped in the process of accessing care abroad by medical tourism brokers - agents who specialize in making international medical care arrangements for patients. As a key source of information for these patients, brokers are likely to play an important role in communicating the risks and benefits of undergoing surgery or other procedures abroad to their clientele. This raises important ethical concerns regarding processes such as informed consent and the liability of brokers in the event that complications arise from procedures. The purpose of this article is to examine the language, information, and online marketing of Canadian medical tourism brokers' websites in light of such ethical concerns.</p> <p>Methods</p> <p>An exhaustive online search using multiple search engines and keywords was performed to compile a comprehensive directory of English-language Canadian medical tourism brokerage websites. These websites were examined using thematic content analysis, which included identifying informational themes, generating frequency counts of these themes, and comparing trends in these counts to the established literature.</p> <p>Results</p> <p>Seventeen websites were identified for inclusion in this study. It was found that Canadian medical tourism broker websites varied widely in scope, content, professionalism and depth of information. Three themes emerged from the thematic content analysis: training and accreditation, risk communication, and business dimensions. Third party accreditation bodies of debatable regulatory value were regularly mentioned on the reviewed websites, and discussion of surgical risk was absent on 47% of the websites reviewed, with limited discussion of risk on the remaining ones. Terminology describing brokers' roles was somewhat inconsistent across the websites. Finally, brokers' roles in follow up care, their prices, and the speed of surgery were the most commonly included business dimensions on the reviewed websites.</p> <p>Conclusion</p> <p>Canadian medical tourism brokers currently lack a common standard of care and accreditation, and are widely lacking in providing adequate risk communication for potential medical tourists. This has implications for the informed consent and consequent safety of Canadian medical tourists.</p

    Search for time-dependent B0s - B0s-bar oscillations using a vertex charge dipole technique

    Get PDF
    We report a search for B0s - B0s-bar oscillations using a sample of 400,000 hadronic Z0 decays collected by the SLD experiment. The analysis takes advantage of the electron beam polarization as well as information from the hemisphere opposite that of the reconstructed B decay to tag the B production flavor. The excellent resolution provided by the pixel CCD vertex detector is exploited to cleanly reconstruct both B and cascade D decay vertices, and tag the B decay flavor from the charge difference between them. We exclude the following values of the B0s - B0s-bar oscillation frequency: Delta m_s < 4.9 ps-1 and 7.9 < Delta m_s < 10.3 ps-1 at the 95% confidence level.Comment: 18 pages, 3 figures, replaced by version accepted for publication in Phys.Rev.D; results differ slightly from first versio

    Integrating Sequencing Technologies in Personal Genomics: Optimal Low Cost Reconstruction of Structural Variants

    Get PDF
    The goal of human genome re-sequencing is obtaining an accurate assembly of an individual's genome. Recently, there has been great excitement in the development of many technologies for this (e.g. medium and short read sequencing from companies such as 454 and SOLiD, and high-density oligo-arrays from Affymetrix and NimbelGen), with even more expected to appear. The costs and sensitivities of these technologies differ considerably from each other. As an important goal of personal genomics is to reduce the cost of re-sequencing to an affordable point, it is worthwhile to consider optimally integrating technologies. Here, we build a simulation toolbox that will help us optimally combine different technologies for genome re-sequencing, especially in reconstructing large structural variants (SVs). SV reconstruction is considered the most challenging step in human genome re-sequencing. (It is sometimes even harder than de novo assembly of small genomes because of the duplications and repetitive sequences in the human genome.) To this end, we formulate canonical problems that are representative of issues in reconstruction and are of small enough scale to be computationally tractable and simulatable. Using semi-realistic simulations, we show how we can combine different technologies to optimally solve the assembly at low cost. With mapability maps, our simulations efficiently handle the inhomogeneous repeat-containing structure of the human genome and the computational complexity of practical assembly algorithms. They quantitatively show how combining different read lengths is more cost-effective than using one length, how an optimal mixed sequencing strategy for reconstructing large novel SVs usually also gives accurate detection of SNPs/indels, how paired-end reads can improve reconstruction efficiency, and how adding in arrays is more efficient than just sequencing for disentangling some complex SVs. Our strategy should facilitate the sequencing of human genomes at maximum accuracy and low cost

    Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome

    Get PDF
    Joseph B, Schwarz RF, Linke B, et al. Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome. PLoS ONE. 2011;6(4): e18441.Background: Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH) and multilocus sequence typing (MLST) of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. Principal Findings: We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA) island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin-and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. Conclusions: Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence

    A genetic algorithm-Bayesian network approach for the analysis of metabolomics and spectroscopic data: application to the rapid detection of Bacillus spores and identification of Bacillus species

    Get PDF
    Background The rapid identification of Bacillus spores and bacterial identification are paramount because of their implications in food poisoning, pathogenesis and their use as potential biowarfare agents. Many automated analytical techniques such as Curie-point pyrolysis mass spectrometry (Py-MS) have been used to identify bacterial spores giving use to large amounts of analytical data. This high number of features makes interpretation of the data extremely difficult We analysed Py-MS data from 36 different strains of aerobic endospore-forming bacteria encompassing seven different species. These bacteria were grown axenically on nutrient agar and vegetative biomass and spores were analyzed by Curie-point Py-MS. Results We develop a novel genetic algorithm-Bayesian network algorithm that accurately identifies sand selects a small subset of key relevant mass spectra (biomarkers) to be further analysed. Once identified, this subset of relevant biomarkers was then used to identify Bacillus spores successfully and to identify Bacillus species via a Bayesian network model specifically built for this reduced set of features. Conclusions This final compact Bayesian network classification model is parsimonious, computationally fast to run and its graphical visualization allows easy interpretation of the probabilistic relationships among selected biomarkers. In addition, we compare the features selected by the genetic algorithm-Bayesian network approach with the features selected by partial least squares-discriminant analysis (PLS-DA). The classification accuracy results show that the set of features selected by the GA-BN is far superior to PLS-DA

    The modulation of adult neuroplasticity is involved in the mood-improving actions of atypical antipsychotics in an animal model of depression

    Get PDF
    Depression is a prevalent psychiatric disorder with an increasing impact in global public health. However, a large proportion of patients treated with currently available antidepressant drugs fail to achieve remission. Recently, antipsychotic drugs have received approval for the treatment of antidepressant-resistant forms of major depression. The modulation of adult neuroplasticity, namely hippocampal neurogenesis and neuronal remodeling, has been considered to have a key role in the therapeutic effects of antidepressants. However, the impact of antipsychotic drugs on these neuroplastic mechanisms remains largely unexplored. In this study, an unpredictable chronic mild stress protocol was used to induce a depressive-like phenotype in rats. In the last 3 weeks of stress exposure, animals were treated with two different antipsychotics: haloperidol (a classical antipsychotic) and clozapine (an atypical antipsychotic). We demonstrated that clozapine improved both measures of depressive-like behavior (behavior despair and anhedonia), whereas haloperidol aggravated learned helplessness in the forced-swimming test and behavior flexibility in a cognitive task. Importantly, an upregulation of adult neurogenesis and neuronal survival was observed in animals treated with clozapine, whereas haloperidol promoted a downregulation of these processes. Furthermore, clozapine was able to re-establish the stress-induced impairments in neuronal structure and gene expression in the hippocampus and prefrontal cortex. These results demonstrate the modulation of adult neuroplasticity by antipsychotics in an animal model of depression, revealing that the atypical antipsychotic drug clozapine reverts the behavioral effects of chronic stress by improving adult neurogenesis, cell survival and neuronal reorganization.This work was co-funded by the Life and Health Sciences Research Institute (ICVS), and Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (Projects NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023). This work has been also funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE) and by National funds, through the FCT, under the scope of the project POCI-01-0145-FEDER-007038. We thank Luís Martins and Ana Lima for the technical assistanceinfo:eu-repo/semantics/publishedVersio

    Bacillus anthracis TIR Domain-Containing Protein Localises to Cellular Microtubule Structures and Induces Autophagy

    No full text
    Toll-like receptors (TLRs) recognise invading pathogens and mediate downstream immune signalling via Toll/IL-1 receptor (TIR) domains. TIR domain proteins (Tdps) have been identified in multiple pathogenic bacteria and have recently been implicated as negative regulators of host innate immune activation. A Tdp has been identified in Bacillus anthracis, the causative agent of anthrax. Here we present the first study of this protein, designated BaTdp. Recombinantly expressed and purified BaTdp TIR domain interacted with several human TIR domains, including that of the key TLR adaptor MyD88, although BaTdp expression in cultured HEK293 cells had no effect on TLR4- or TLR2- mediated immune activation. During expression in mammalian cells, BaTdp localised to microtubular networks and caused an increase in lipidated cytosolic microtubule-associated protein 1A/1B-light chain 3 (LC3), indicative of autophagosome formation. In vivo intra-nasal infection experiments in mice showed that a BaTdp knockout strain colonised host tissue faster with higher bacterial load within 4 days post-infection compared to the wild type B. anthracis. Taken together, these findings indicate that BaTdp does not play an immune suppressive role, but rather, its absence increases virulence. BaTdp present in wild type B. anthracis plausibly interact with the infected host cell, which undergoes autophagy in self-defence
    corecore