676 research outputs found

    Bell-Type Quantum Field Theories

    Full text link
    In [Phys. Rep. 137, 49 (1986)] John S. Bell proposed how to associate particle trajectories with a lattice quantum field theory, yielding what can be regarded as a |Psi|^2-distributed Markov process on the appropriate configuration space. A similar process can be defined in the continuum, for more or less any regularized quantum field theory; such processes we call Bell-type quantum field theories. We describe methods for explicitly constructing these processes. These concern, in addition to the definition of the Markov processes, the efficient calculation of jump rates, how to obtain the process from the processes corresponding to the free and interaction Hamiltonian alone, and how to obtain the free process from the free Hamiltonian or, alternatively, from the one-particle process by a construction analogous to "second quantization." As an example, we consider the process for a second quantized Dirac field in an external electromagnetic field.Comment: 53 pages LaTeX, no figure

    Holographic renormalization as a canonical transformation

    Get PDF
    The gauge/string dualities have drawn attention to a class of variational problems on a boundary at infinity, which are not well defined unless a certain boundary term is added to the classical action. In the context of supergravity in asymptotically AdS spaces these problems are systematically addressed by the method of holographic renormalization. We argue that this class of a priori ill defined variational problems extends far beyond the realm of holographic dualities. As we show, exactly the same issues arise in gravity in non asymptotically AdS spaces, in point particles with certain unbounded from below potentials, and even fundamental strings in flat or AdS backgrounds. We show that the variational problem in all such cases can be made well defined by the following procedure, which is intrinsic to the system in question and does not rely on the existence of a holographically dual theory: (i) The first step is the construction of the space of the most general asymptotic solutions of the classical equations of motion that inherits a well defined symplectic form from that on phase space. The requirement of a well defined symplectic form is essential and often leads to a necessary repackaging of the degrees of freedom. (ii) Once the space of asymptotic solutions has been constructed in terms of the correct degrees of freedom, then there exists a boundary term that is obtained as a certain solution of the Hamilton-Jacobi equation which simultaneously makes the variational problem well defined and preserves the symplectic form. This procedure is identical to holographic renormalization in the case of asymptotically AdS gravity, but it is applicable to any Hamiltonian system.Comment: 37 pages; v2 minor corrections in section 2, 2 references and a footnote on Palatini gravity added. Version to appear in JHE

    Towards conversational technology to promote, monitor and protect mental health

    Get PDF
    This paper presents a general overview of the H2020-MSCA-RISE project MENHIR (Mental health monitoring through interactive conversations), which aim is to explore the possibilities of conversational technologies (chatbots) to understand, promote and protect mental health and assist people with anxiety and mild depression manage their conditions. MENHIR started on February 2019 and will have a duration of 4 years. Its consortium brings together 8 partners including universities, anon-profit organization and companies

    On effective actions of BPS branes and their higher derivative corrections

    Get PDF
    We calculate in detail the disk level S-matrix element of one Ramond-Ramond field and three gauge field vertex operators in the world volume of BPS branes, to find four gauge field couplings to all orders of α\alpha' up to on-shell ambiguity. Then using these infinite couplings we find that the massless pole of the field theory amplitude is exactly equal to the massless pole S-matrix element of this amplitude for the p=np=n case to all orders of α\alpha'. Finally we show that the infinite massless poles and the contact terms of this amplitude for the p=n+2p=n+2 case can be reproduced by the Born-Infeld action and the Wess-Zumino actions and by their higher derivative corrections.Comment: 26 pages, 2 figures, minor corrections,references added and version published in JHE

    Rotating black holes with equal-magnitude angular momenta in d=5 Einstein-Gauss-Bonnet theory

    Full text link
    We construct rotating black hole solutions in Einstein-Gauss-Bonnet theory in five spacetime dimensions. These black holes are asymptotically flat, and possess a regular horizon of spherical topology and two equal-magnitude angular momenta associated with two distinct planes of rotation. The action and global charges of the solutions are obtained by using the quasilocal formalism with boundary counterterms generalized for the case of Einstein-Gauss-Bonnet theory. We discuss the general properties of these black holes and study their dependence on the Gauss-Bonnet coupling constant α\alpha. We argue that most of the properties of the configurations are not affected by the higher derivative terms. For fixed α\alpha the set of black hole solutions terminates at an extremal black hole with a regular horizon, where the Hawking temperature vanishes and the angular momenta attain their extremal values. The domain of existence of regular black hole solutions is studied. The near horizon geometry of the extremal solutions is determined by employing the entropy function formalism.Comment: 25 pages, 7 figure

    Update on HER-2 as a target for cancer therapy: The ERBB2 promoter and its exploitation for cancer treatment

    Get PDF
    Overexpression of the ERBB2 proto-oncogene is associated with amplification of the gene in breast cancer but increased activity of the promoter also plays a significant role. Members of two transcription factor families (AP-2 and Ets) show increased binding to the promoter in over-expressing cells. Consequently, strategies have been devised to target promoter activity, either through the DNA binding sites for these factors, or through another promoter sequence, a polypurine-polypyrimidine repeat structure. The promoter has also been exploited for its tumour-specific activity to direct the accumulation of cytotoxic compounds selectively within cancer cells. Our current understanding of the ERBB2 promoter is reviewed and the status of these therapeutic avenues is discussed

    A Triple Protostar System Formed via Fragmentation of a Gravitationally Unstable Disk

    Get PDF
    Binary and multiple star systems are a frequent outcome of the star formation process, and as a result, almost half of all sun-like stars have at least one companion star. Theoretical studies indicate that there are two main pathways that can operate concurrently to form binary/multiple star systems: large scale fragmentation of turbulent gas cores and filaments or smaller scale fragmentation of a massive protostellar disk due to gravitational instability. Observational evidence for turbulent fragmentation on scales of >>1000~AU has recently emerged. Previous evidence for disk fragmentation was limited to inferences based on the separations of more-evolved pre-main sequence and protostellar multiple systems. The triple protostar system L1448 IRS3B is an ideal candidate to search for evidence of disk fragmentation. L1448 IRS3B is in an early phase of the star formation process, likely less than 150,000 years in age, and all protostars in the system are separated by <<200~AU. Here we report observations of dust and molecular gas emission that reveal a disk with spiral structure surrounding the three protostars. Two protostars near the center of the disk are separated by 61 AU, and a tertiary protostar is coincident with a spiral arm in the outer disk at a 183 AU separation. The inferred mass of the central pair of protostellar objects is \sim1 Msun_{sun}, while the disk surrounding the three protostars has a total mass of \sim0.30 M_{\sun}. The tertiary protostar itself has a minimum mass of \sim0.085 Msun_{sun}. We demonstrate that the disk around L1448 IRS3B appears susceptible to disk fragmentation at radii between 150~AU and 320~AU, overlapping with the location of the tertiary protostar. This is consistent with models for a protostellar disk that has recently undergone gravitational instability, spawning one or two companion stars.Comment: Published in Nature on Oct. 27th. 24 pages, 8 figure

    Magnetic resonance imaging after most common form of concussion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until now there is a lack of carefully controlled studies with conventional MR imaging performed exclusively in concussion with short lasting loss of consciousness (LOC).</p> <p>Methods</p> <p>A MR investigation was performed within 24 hours and after 3 months in 20 patients who had suffered a concussion with a verified loss of consciousness of maximally 5 minutes. As a control group, 20 age- and gender matched patients with minor orthopaedic injuries had a MR investigation using the same protocol.</p> <p>Results</p> <p>In a concussion population with an average LOC duration of 1. 4 minutes no case with unequivocal intracranial traumatic pathology was detected.</p> <p>Conclusion</p> <p>An ordinary concussion with short lasting LOC does not or only seldom result in a degree of diffuse axonal injury (DAI) that is visualized by conventional MR with field strength of 1.0 Tesla (T). Analysis of earlier MR studies in concussion using field strength of 1.5 T as well as of studies with diffusion tensor MR imaging (MR DTI) reveal methodological shortcomings, in particular use of inadequate control groups. There is, therefore, a need for carefully controlled studies using MR of higher field strength and/or studies with MR DTI exclusively in common concussion with LOC of maximally 5 minutes.</p

    A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star

    Get PDF
    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed^1, 2. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life^3. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration^4, 5. Other theories posit that planet assembly at small orbital separations may be common^6, 7, 8. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation

    From DNA sequence to application: possibilities and complications

    Get PDF
    The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems. The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons. Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.
    corecore