50 research outputs found

    Evidence for an Intermediate-mass Milky Way from Gaia DR2 Halo Globular Cluster Motions

    Get PDF
    We estimate the mass of the Milky Way (MW) within 21.1 kpc using the kinematics of halo globular clusters (GCs) determined by Gaia. The second Gaia data release (DR2) contained a catalogue of absolute proper motions (PMs) for a set of Galactic GCs and satellite galaxies measured using Gaia DR2 data. We select from the catalogue only halo GCs, identifying a total of 34 GCs spanning 2.0<r<21.12.0 < r < 21.1 kpc, and use their 3D kinematics to estimate the anisotropy over this range to be β=0.46−0.19+0.15\beta = 0.46^{+0.15}_{-0.19}, in good agreement, though slightly lower than, a recent estimate for a sample of halo GCs using HST PM measurements further out in the halo. We then use the Gaia kinematics to estimate the mass of the MW inside the outermost GC to be M(<21.1kpc)=0.21−0.03+0.041012M⊙M(< 21.1 \mathrm{kpc}) = 0.21^{+0.04}_{-0.03} 10^{12} \mathrm{M_\odot}, which corresponds to a circular velocity of vcirc(21.1kpc)=206−16+19v_\mathrm{circ}(21.1 \mathrm{kpc}) = 206^{+19}_{-16} km/s. The implied virial mass is Mvirial=1.28−0.48+0.971012M⊙M_\mathrm{virial} = 1.28^{+0.97}_{-0.48} 10^{12} \mathrm{M_\odot}. The error bars encompass the uncertainties on the anisotropy and on the density profile of the MW dark halo, and the scatter inherent in the mass estimator we use. We get improved estimates when we combine the Gaia and HST samples to provide kinematics for 46 GCs out to 39.5 kpc: β=0.52−0.14+0.11\beta = 0.52^{+0.11}_{-0.14}, M(<39.5kpc)=0.42−0.06+0.071012M⊙M(< 39.5 \mathrm{kpc}) = 0.42^{+0.07}_{-0.06} 10^{12} \mathrm{M_\odot}, and Mvirial=1.54−0.44+0.751012M⊙M_\mathrm{virial} = 1.54^{+0.75}_{-0.44} 10^{12} \mathrm{M_\odot}. We show that these results are robust to potential substructure in the halo GC distribution. While a wide range of MW virial masses have been advocated in the literature, from below 1012M⊙10^{12} \mathrm{M_\odot} to above 2×1012M⊙2 \times 10^{12}\mathrm{M_\odot}, these new data imply that an intermediate mass is most likely

    New evidence for a massive black hole at the centre of the quiescent galaxy M32

    Full text link
    Massive black holes are thought to reside at the centres of many galaxies, where they power quasars and active galactic nuclei. But most galaxies are quiescent, indicating that any central massive black hole present will be starved of fuel and therefore detectable only through its gravitational influence on the motions of the surrounding stars. M32 is a nearby, quiescent elliptical galaxy in which the presence of a black hole has been suspected; however, the limited resolution of the observational data and the restricted classes of models used to interpret this data have made it difficult to rule out alternative explanations, such as models with an anisotropic stellar velocity distribution and no dark mass or models with a central concentration of dark objects (for example, stellar remnants or brown dwarfs). Here we present high-resolution optical HST spectra of M32, which show that the stellar velocities near the centre of this galaxy exceed those inferred from previous ground-based observations. We use a range of general dynamical models to determine a central dark mass concentration of (3.4 +/- 1.6) x 10^6 solar masses, contained within a region only 0.3 pc across. This leaves a massive black hole as the most plausible explanation of the data, thereby strengthening the view that such black holes exist even in quiescent galaxies.Comment: 8 pages, LaTeX, 3 figures; mpeg animation of the stellar motions in M32 available at http://oposite.stsci.edu/pubinfo/Anim.htm

    Three aspects of red giant studies in the Magellanic Clouds

    Get PDF
    There are three important aspects concerning the study of the red giant and in particular of the asymptotic giant branch (AGB) stars in the Magellanic Clouds. These are: the surface distribution, the luminosity function and the variability. The spatial distribution of AGB stars is an efficient tool to study the structure of the galaxies and their metalicity by analysing the ratio between carbon- and oxygen-rich AGB stars. The shape of the luminosity function carries informations about the star formation rate in the Clouds and it can be mathematically related to their history. Most AGB stars vary their magnitude in a few to several hundred years time; the one epoch DENIS magnitudes for both Large and Small Magellanic Cloud AGB stars outline the same relations as a function of period.Comment: 8 pages, 6 figures, invited talk, to be published in: Mass-Losing Pulsating Stars and their Circumstellar Matter, Y. Nakada & M. Honma (eds) Kluwer ASSL serie

    Galaxy Harassment and the Evolution of Clusters of Galaxies

    Get PDF
    Disturbed spiral galaxies with high rates of star formation pervaded clusters of galaxies just a few billion years ago, but nearby clusters exclude spirals in favor of ellipticals. ``Galaxy harassment" (frequent high speed galaxy encounters) drives the morphological transformation of galaxies in clusters, provides fuel for quasars in subluminous hosts and leaves detectable debris arcs. Simulated images of harassed galaxies are strikingly similar to the distorted spirals in clusters at z∼0.4z \sim 0.4 observed by the Hubble Space Telescope.Comment: Submitted to Nature. Latex file, 7 pages, 10 photographs in gif and jpeg format included. 10 compressed postscript figures and text available using anonymous ftp from ftp://ftp-hpcc.astro.washington.edu/pub/hpcc/moore/ (mget *) Also available at http://www-hpcc.astro.washington.edu/papers

    An Over-Massive Black Hole in the Compact Lenticular Galaxy NGC1277

    Get PDF
    All massive galaxies likely have supermassive black holes at their centers, and the masses of the black holes are known to correlate with properties of the host galaxy bulge component. Several explanations have been proposed for the existence of these locally-established empirical relationships; they include the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, or galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are thus important for distinguishing between various theoretical models of galaxy evolution, and they further form the basis for all black hole mass measurements at large distances. In particular, observations have shown that the mass of the black hole is typically 0.1% of the stellar bulge mass of the galaxy. The small galaxy NGC4486B currently has the largest published fraction of its mass in a black hole at 11%. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, disky galaxy with a mass of 1.2 x 10^11 Msun. From the data, we determine that the mass of the central black hole is 1.7 x 10^10 Msun, or 59% its bulge mass. Five other compact galaxies have properties similar to NGC 1277 and therefore may also contain over-sized black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the normal black hole mass scaling relations.Comment: 7 pages. 6 figures. Nature. Animation at http://www.mpia.de/~bosch/blackholes.htm

    A Vast Thin Plane of Co-rotating Dwarf Galaxies Orbiting the Andromeda Galaxy

    Full text link
    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. An early analysis noted that dwarf galaxies may not be isotropically distributed around our Galaxy, as several are correlated with streams of HI emission, and possibly form co-planar groups. These suspicions are supported by recent analyses, and it has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence (99.998% significance) of a planar sub-group of satellites in the Andromeda galaxy, comprising approximately 50% of the population. The structure is vast: at least 400 kpc in diameter, but also extremely thin, with a perpendicular scatter <14.1 kpc (99% confidence). Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This finding shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum, a new insight for our understanding of the origin of these most dark matter dominated of galaxies. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and is co-planar with the Milky Way to Andromeda position vector. The existence of such extensive coherent kinematic structures within the halos of massive galaxies is a fact that must be explained within the framework of galaxy formation and cosmology.Comment: Published in the 3rd Jan 2013 issue of Nature. 19 pages, 4 figures, 1 three-dimensional interactive figure. To view and manipulate the 3-D figure, an Adobe Reader browser plug-in is required; alternatively save to disk and view with Adobe Reade

    Infrared composition of the Large Magellanic Cloud

    Get PDF
    The evolution of galaxies and the history of star formation in the Universe are among the most important topics in today's astrophysics. Especially, the role of small, irregular galaxies in the star-formation history of the Universe is not yet clear. Using the data from the AKARI IRC survey of the Large Magellanic Cloud at 3.2, 7, 11, 15, and 24 {\mu}m wavelengths, i.e., at the mid- and near-infrared, we have constructed a multiwavelength catalog containing data from a cross-correlation with a number of other databases at different wavelengths. We present the separation of different classes of stars in the LMC in color-color, and color-magnitude, diagrams, and analyze their contribution to the total LMC flux, related to point sources at different infrared wavelengths

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher

    Bar-Driven Evolution and 2D Spectroscopy of Bulges

    Full text link
    A multi-faceted approach is described to constrain the importance of bar-driven evolution in disk galaxies, particularly bulge formation. N-body simulations are used to construct stellar kinematic bar diagnostics for edge-on systems and to quantify the expected vertical structure of bars, and they are compared to observations of 30 edge-on spirals, most with a boxy bulge. Long-slit spectra of the galaxies show characteristic double-hump rotation curves, dispersion profiles with secondary peaks and/or flat maxima, and correlated h3 and V profiles, indicating that most of them harbor edge-on bars. The presence of cold, quasi-axisymmetric central stellar disks is also suggested, presumably formed through bar-driven gaseous inflow and star formation. K-band imaging of the same galaxies spectacularly highlights radial variations of the bars' scaleheights, as expected from vertical disk instabilities. The light profiles also vary radially in shape but never approach a classic de Vaucouleurs law. Filtering of the images further isolates the specific orbit families at the origin of the boxy structure, which can be directly related to periodic orbit calculations in 3D barred potentials. Bars are thus shown to contribute substantially to the formation of both large-scale triaxial bulges and embedded central disks. Relevant results from the SAURON survey of the stellar/ionized-gas kinematics and stellar populations of spheroids are also described. Examples are used to illustrate the potential of coupling stellar kinematics and linestrengths (age and metallicity), here specifically to unravel the dynamical evolution and related chemical enrichment history of bars and bulges. [Abridged]Comment: 10 pages, including 4 figures (LaTeX, kapproc.cls, procps.sty). To appear in "Penetrating Bars through Masks of Cosmic Dust: the Hubble Tuning Fork Strikes a New Note", eds. D.L. Block, K.C. Freeman, I. Puerari, & R. Groess (Kluwer: Dordrecht). A version with full resolution PostScript figures is available at http://www.astro.columbia.edu/~bureau/Publications/peanut_sa_04.ps.g

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd
    corecore