1,069 research outputs found
Randomised trials of 6 % tetrastarch (hydroxyethyl starch 130/0.4 or 0.42) for severe sepsis reporting mortality: systematic review and meta-analysis.
Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley
Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∼20/∼16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley
Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict
Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated
Zinc intake, status and indices of cognitive function in adults and children: a systematic review and meta-analysis
In developing countries, deficiencies of micronutrients are thought to have a major impact on child development; however, a consensus on the specific relationship between dietary zinc intake and cognitive function remains elusive. The aim of this systematic review was to examine the relationship between zinc intake, status and indices of cognitive function in children and adults. A systematic literature search was conducted using EMBASE, MEDLINE and Cochrane Library databases from inception to March 2014. Included studies were those that supplied zinc as supplements or measured dietary zinc intake. A meta-analysis of the extracted data was performed where sufficient data were available. Of all of the potentially relevant papers, 18 studies met the inclusion criteria, 12 of which were randomised controlled trials (RCTs; 11 in children and 1 in adults) and 6 were observational studies (2 in children and 4 in adults). Nine of the 18 studies reported a positive association between zinc intake or status with one or more measure of cognitive function. Meta-analysis of data from the adult’s studies was not possible because of limited number of studies. A meta-analysis of data from the six RCTs conducted in children revealed that there was no significant overall effect of zinc intake on any indices of cognitive function: intelligence, standard mean difference of <0.001 (95% confidence interval (CI) –0.12, 0.13) P=0.95; executive function, standard mean difference of 0.08 (95% CI, –0.06, 022) P=0.26; and motor skills standard mean difference of 0.11 (95% CI –0.17, 0.39) P=0.43. Heterogeneity in the study designs was a major limitation, hence only a small number (n=6) of studies could be included in the meta-analyses. Meta-analysis failed to show a significant effect of zinc supplementation on cognitive functioning in children though, taken as a whole, there were some small indicators of improvement on aspects of executive function and motor development following supplementation but high-quality RCTs are necessary to investigate this further
Omega-3 supplementation in patients with sepsis: a systematic review and meta-analysis of randomized trials.
BACKGROUND: Nutritional supplementation of omega-3 fatty acids has been proposed to modulate the balance of pro- and anti-inflammatory mediators in sepsis. If proved to improve clinical outcomes in critically ill patients with sepsis, this intervention would be easy to implement. However, the cumulative evidence from several randomized clinical trials (RCTs) remains unclear. METHODS: We searched the Cochrane Library, MEDLINE, and EMBASE through December 2016 for RCTs on parenteral or enteral omega-3 supplementation in adult critically ill patients diagnosed with sepsis or septic shock. We analysed the included studies for mortality, intensive care unit (ICU) length of stay, and duration of mechanical ventilation, and used the Grading of Recommendations Assessment, Development and Evaluation approach to assess the quality of the evidence for each outcome. RESULTS: A total of 17 RCTs enrolling 1239 patients met our inclusion criteria. Omega-3 supplementation compared to no supplementation or placebo had no significant effect on mortality [relative risk (RR) 0.85; 95% confidence interval (CI) 0.71, 1.03; P = 0.10; I (2) = 0%; moderate quality], but significantly reduced ICU length of stay [mean difference (MD) -3.79 days; 95% CI -5.49, -2.09; P < 0.0001, I (2) = 82%; very low quality] and duration of mechanical ventilation (MD -2.27 days; 95% CI -4.27, -0.27; P = 0.03, I (2) = 60%; very low quality). However, sensitivity analyses challenged the robustness of these results. CONCLUSION: Omega-3 nutritional supplementation may reduce ICU length of stay and duration of mechanical ventilation without significantly affecting mortality, but the very low quality of overall evidence is insufficient to justify the routine use of omega-3 fatty acids in the management of sepsis
A Mathematical model for Astrocytes mediated LTP at Single Hippocampal Synapses
Many contemporary studies have shown that astrocytes play a significant role
in modulating both short and long form of synaptic plasticity. There are very
few experimental models which elucidate the role of astrocyte over Long-term
Potentiation (LTP). Recently, Perea & Araque (2007) demonstrated a role of
astrocytes in induction of LTP at single hippocampal synapses. They suggested a
purely pre-synaptic basis for induction of this N-methyl-D- Aspartate (NMDA)
Receptor-independent LTP. Also, the mechanisms underlying this pre-synaptic
induction were not investigated. Here, in this article, we propose a
mathematical model for astrocyte modulated LTP which successfully emulates the
experimental findings of Perea & Araque (2007). Our study suggests the role of
retrograde messengers, possibly Nitric Oxide (NO), for this pre-synaptically
modulated LTP.Comment: 51 pages, 15 figures, Journal of Computational Neuroscience (to
appear
Evolutionary relationships among barley and <i>Arabidopsis</i> core circadian clock and clock-associated genes
The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-015-9665-0) contains supplementary material, which is available to authorized users
Is Sustained Virological Response a Marker of Treatment Efficacy in Patients with Chronic Hepatitis C Viral Infection with No Response or Relapse to Previous Antiviral Intervention?
Background: Randomised clinical trials (RCTs) of antiviral interventions in patients with chronic hepatitis C virus (HCV) infection use sustained virological response (SVR) as the main outcome. There is sparse information on long-term mortality from RCTs. Methods: We created a decision tree model based on a Cochrane systematic review on interferon retreatment for patients who did not respond to initial therapy or who relapsed following SVR. Extrapolating data to 20 years, we modelled the outcome from three scenarios: (1) observed medium-term (5 year) annual mortality rates continue to the long term (20 years); (2) long-term annual mortality in retreatment responders falls to that of the general population while retreatment non-responders continue at the medium-term mortality; (3) long-term annual mortality in retreatment non-responders is the same as control group non-responders (i.e., the increased treatment-related medium mortality “wears off”). Results: The mean differences in life expectancy over 20 years with interferon versus control in the first, second, and third scenarios were -0.34 years (95% confidence interval (CI) -0.71 to 0.03), -0.23 years (95% CI -0.69 to 0.24), and -0.01 (95% CI -0.3 to 0.27), respectively. The life expectancy was always lower in the interferon group than in the control group in scenario 1. In scenario 3, the interferon group had a longer life expectancy than the control group only when more than 7% in the interferon group achieved SVR. Conclusions: SVR may be a good prognostic marker but does not seem to be a valid surrogate marker for assessing HCV treatment efficacy of interferon retreatment. The SVR threshold at which retreatment increases life expectancy may be different for different drugs depending upon the adverse event profile and treatment efficacy. This has to be determined for each drug by RCTs and appropriate modelling before SVR can be accepted as a surrogate marker
Both habitat change and local lek structure influence patterns of spatial loss and recovery in a black grouse population
The final publication is available at Springer via http://dx.doi.org/10.1007/s10144-015-0484-3Land use change is a major driver of declines in wildlife populations. Where human economic or recreational interests and wildlife share landscapes this problem is exacerbated. Changes in UK black grouse Tetrao tetrix populations are thought to have been strongly influenced by upland land use change. In a long-studied population within Perthshire, lek persistence is positively correlated with lek size, and remaining leks clustered most strongly within the landscape when the population is lowest, suggesting that there may be a demographic and/or spatial context to the reaction of the population to habitat changes. Hierarchical cluster analysis of lek locations revealed that patterns of lek occupancy when the population was declining were different to those during the later recovery period. Response curves from lek-habitat models developed using MaxEnt for periods with a declining population, low population, and recovering population were consistent across years for most habitat measures. We found evidence linking lek persistence with habitat quality changes and more leks which appeared between 1994 and 2008 were in improving habitat than those which disappeared during the same period. Generalised additive models (GAMs) identified changes in woodland and starting lek size as being important indicators of lek survival between declining and low/recovery periods. There may also have been a role for local densities in explaining recovery since the population low point. Persistence of black grouse leks was influenced by habitat, but changes in this alone did not fully account for black grouse declines. Even when surrounded by good quality habitat, leks can be susceptible to extirpation due to isolation
- …
