2,883 research outputs found

    Exercise inhibits the effects of smoke-induced COPD involving modulation of STAT3

    Get PDF
    Purpose . Evaluate the participation of STAT3 in the e ff ects of aerobic exercise (AE) in a model of smoke-induced COPD. Methods . C57Bl/6 male mice were divided into control, Exe, COPD, and COPD+Exe groups. Smoke were administered during 90 days. Treadmill aerobic training begun on day 61 until day 90. Pulmonary in fl ammation, systemic in fl ammation, the level of lung emphysema, and the airway remodeling were evaluated. Analysis of integral and phosphorylated expression of STAT3 by airway epithelial cells, peribronchial leukocytes, and parenchymal leukocytes was performed. Results . AE inhibited smoke-induced accumulation of total cells ( p <0 001 ), lymphocytes ( p <0 001 ), and neutrophils ( p <0 001 ) in BAL, as well as BAL levels of IL- 1 β ( p <0 001 ), CXCL1 ( p <0 001 ), IL-17 ( p <0 001 ), and TNF- α ( p <0 05 ), while increased the levels of IL-10 ( p <0 001 ). AE also inhibited smoke-induced increases in total leukocytes ( p <0 001 ), neutrophils ( p <0 05 ), lymphocytes ( p <0 001 ), and monocytes ( p <0 01 ) in blood, as well as serum levels of IL-1 β ( p <0 01 ), CXCL1 ( p <0 01 ), IL-17 ( p <0 05 ), and TNF- α ( p <0 01 ), while increased the levels of IL-10 ( p <0 001 ). AE reduced smoke-induced emphysema ( p <0 001 ) and collagen fi ber accumulation in the airways ( p <0 001 ). AE reduced smoke-induced STAT3 and phospho-STAT3 expression in airway epithelial cells ( p <0 001 ), peribronchial leukocytes ( p <0 001 ), and parenchymal leukocytes ( p <0 001 ). Conclusions .AE reduces smoke-induced COPD phenotype involving STAT3

    Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Get PDF
    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form

    Proteomic Analysis of the Secretory Response of Aspergillus niger to D-Maltose and D-Xylose

    Get PDF
    Fungi utilize polysaccharide substrates through extracellular digestion catalyzed by secreted enzymes. Thus far, protein secretion by the filamentous fungus Aspergillus niger has mainly been studied at the level of individual proteins and by genome and transcriptome analyses. To extend these studies, a complementary proteomics approach was applied with the aim to investigate the changes in secretome and microsomal protein composition resulting from a shift to a high level secretion condition. During growth of A. niger on d-sorbitol, small amounts of d-maltose or d-xylose were used as inducers of the extracellular amylolytic and xylanolytic enzymes. Upon induction, protein compositions in the extracellular broth as well as in enriched secretory organelle (microsomal) fractions were analyzed using a shotgun proteomics approach. In total 102 secreted proteins and 1,126 microsomal proteins were identified in this study. Induction by d-maltose or d-xylose resulted in the increase in specific extracellular enzymes, such as glucoamylase A on d-maltose and β-xylosidase D on d-xylose, as well as of microsomal proteins. This reflects the differential expression of selected genes coding for dedicated extracellular enzymes. As expected, the addition of extra d-sorbitol had no effect on the expression of carbohydrate-active enzymes, compared to addition of d-xylose or d-maltose. Furthermore, d-maltose induction caused an increase in microsomal proteins related to translation (e.g., Rpl15) and vesicular transport (e.g., the endosomal-cargo receptor Erv14). Millimolar amounts of the inducers d-maltose and d-xylose are sufficient to cause a direct response in specific protein expression levels. Also, after induction by d-maltose or d-xylose, the induced enzymes were found in microsomes and extracellular. In agreement with our previous findings for d-xylose induction, d-maltose induction leads to recruitment of proteins involved in proteasome-mediated degradation
    • …
    corecore