34 research outputs found

    Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications

    Get PDF
    Resorting to a multiphase modelling framework, tumours are described here as a mixture of tumour and host cells within a porous structure constituted by a remodelling extracellular matrix (ECM), which is wet by a physiological extracellular fluid. The model presented in this article focuses mainly on the description of mechanical interactions of the growing tumour with the host tissue, their influence on tumour growth, and the attachment/detachment mechanisms between cells and ECM. Starting from some recent experimental evidences, we propose to describe the interaction forces involving the extracellular matrix via some concepts coming from viscoplasticity. We then apply the model to the description of the growth of tumour cords and the formation of fibrosis

    Mathematical modeling of solid cancer growth with angiogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer arises when within a single cell multiple malfunctions of control systems occur, which are, broadly, the system that promote cell growth and the system that protect against erratic growth. Additional systems within the cell must be corrupted so that a cancer cell, to form a mass of any real size, produces substances that promote the growth of new blood vessels. Multiple mutations are required before a normal cell can become a cancer cell by corruption of multiple growth-promoting systems.</p> <p>Methods</p> <p>We develop a simple mathematical model to describe the solid cancer growth dynamics inducing angiogenesis in the absence of cancer controlling mechanisms.</p> <p>Results</p> <p>The initial conditions supplied to the dynamical system consist of a perturbation in form of pulse: The origin of cancer cells from normal cells of an organ of human body. Thresholds of interacting parameters were obtained from the steady states analysis. The existence of two equilibrium points determine the strong dependency of dynamical trajectories on the initial conditions. The thresholds can be used to control cancer.</p> <p>Conclusions</p> <p>Cancer can be settled in an organ if the following combination matches: better fitness of cancer cells, decrease in the efficiency of the repairing systems, increase in the capacity of sprouting from existing vascularization, and higher capacity of mounting up new vascularization. However, we show that cancer is rarely induced in organs (or tissues) displaying an efficient (numerically and functionally) reparative or regenerative mechanism.</p

    A Sub-Cellular Viscoelastic Model for Cell Population Mechanics

    Get PDF
    Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and ‘in silico’ (computational) models as an alternate solution. This paper introduces a single-cell-based model representing the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements, such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point) incorporates the cell's interaction and communication with other cells and its environment. The model is capable of simulating how cells cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with extra-cellular matrix (ECM), effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of individual cells and the communication between cells and their microenvironment while simultaneously allowing for the formation of clusters or sheets of cells that act together as one complex tissue

    The proportion of cancer-related entries in PubMed has increased considerably; is cancer truly "The Emperor of All Maladies"?

    Get PDF
    In this work, the public database of biomedical literature PubMed was mined using queries with combinations of keywords and year restrictions. It was found that the proportion of Cancer-related entries per year in PubMed has risen from around 6% in 1950 to more than 16% in 2016. This increase is not shared by other conditions such as AIDS, Malaria, Tuberculosis, Diabetes, Cardiovascular, Stroke and Infection some of which have, on the contrary, decreased as a proportion of the total entries per year. Organ-related queries were performed to analyse the variation of some specific cancers. A series of queries related to incidence, funding, and relationship with DNA, Computing and Mathematics, were performed to test correlation between the keywords, with the hope of elucidating the cause behind the rise of Cancer in PubMed. Interestingly, the proportion of Cancer-related entries that contain "DNA", "Computational" or "Mathematical" have increased, which suggests that the impact of these scientific advances on Cancer has been stronger than in other conditions. It is important to highlight that the results obtained with the data mining approach here presented are limited to the presence or absence of the keywords on a single, yet extensive, database. Therefore, results should be observed with caution. All the data used for this work is publicly available through PubMed and the UK's Office for National Statistics. All queries and figures were generated with the software platform Matlab and the files are available as supplementary material

    Cell Adhesion Mechanisms and Stress Relaxation in the Mechanics of Tumours

    No full text
    Tumour cells usually live in an environment formed by other host cells, extra-cellular matrix and extra-cellular liquid. Cells duplicate, reorganise and deform while binding each other due to adhesion molecules exerting forces of measurable strength. In this paper a macroscopic mechanical model of solid tumour is investigated which takes such adhesion mechanisms into account. The extracellular matrix is treated as an elastic compressible material, while, in order to define the relationship between stress and strain for the cellular constituents, the deformation gradient is decomposed in a multiplicative way distinguishing the contribution due to growth, to cell rearrangement and to elastic deformation. On the basis of experimental results at a cellular level, it is proposed that at a macroscopic level there exists a yield condition separating the elastic and dissipative regimes. Previously proposed models are obtained as limit cases, e.g. fluid-like models are obtained in the limit of fast cell reorganisation and negligible yield stress. A numerical test case shows that the model is able to account for several complex interactions: how tumour growth can be influenced by stress, how and where it can generate cell reorganisation to release the stress level, how it can lead to capsule formation and compression of the surrounding tissu

    Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth

    No full text
    The idea that one can possibly develop computational models that predict the emergence, growth, or decline of tumors in living tissue is enormously intriguing as such predictions could revolutionize medicine and bring a new paradigm into the treatment and prevention of a class of the deadliest maladies affecting humankind. But at the heart of this subject is the notion of predictability itself, the ambiguity involved in selecting and implementing effective models, and the acquisition of relevant data, all factors that contribute to the difficulty of predicting such complex events as tumor growth with quantifiable uncertainty. In this work, we attempt to lay out a framework, based on Bayesian probability, for systematically addressing the questions of Validation, the process of investigating the accuracy with which a mathematical model is able to reproduce particular physical events, and Uncertainty quantification, developing measures of the degree of confidence with which a computer model predicts particular quantities of interest. For illustrative purposes, we exercise the process using virtual data for models of tumor growth based on diffuse-interface theories of mixtures utilizing virtual data
    corecore