31 research outputs found

    Silhouette + Attraction: A Simple and Effective Method for Text Clustering

    Get PDF
    [EN] This article presents silhouette attraction (Sil Att), a simple and effective method for text clustering, which is based on two main concepts: the silhouette coefficient and the idea of attraction. The combination of both principles allows us to obtain a general technique that can be used either as a boosting method, which improves results of other clustering algorithms, or as an independent clustering algorithm. The experimental work shows that Sil Att is able to obtain high-quality results on text corpora with very different characteristics. Furthermore, its stable performance on all the considered corpora is indicative that it is a very robust method. This is a very interesting positive aspect of Sil Att with respect to the other algorithms used in the experiments, whose performances heavily depend on specific characteristics of the corpora being considered.This research work has been partially funded by UNSL, CONICET (Argentina), DIANA-APPLICATIONS-Finding Hidden Knowledge in Texts: Applications (TIN2012-38603-C02-01) research project, and the WIQ-EI IRSES project (grant no. 269180) within the FP 7 Marie Curie People Framework on Web Information Quality Evaluation Initiative. The work of the third author was done also in the framework of the VLC/CAMPUS Microcluster on Multimodal Interaction in Intelligent Systems.Errecalde, M.; Cagnina, L.; Rosso, P. (2015). Silhouette + Attraction: A Simple and Effective Method for Text Clustering. Natural Language Engineering. 1-40. https://doi.org/10.1017/S1351324915000273S140Zhao, Y., & Karypis, G. (2004). Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering. Machine Learning, 55(3), 311-331. doi:10.1023/b:mach.0000027785.44527.d6Tu, L., & Chen, Y. (2009). Stream data clustering based on grid density and attraction. ACM Transactions on Knowledge Discovery from Data, 3(3), 1-27. doi:10.1145/1552303.1552305Yang, T., Jin, R., Chi, Y., & Zhu, S. (2009). Combining link and content for community detection. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’09. doi:10.1145/1557019.1557120Zhao, Y., Karypis, G., & Fayyad, U. (2005). Hierarchical Clustering Algorithms for Document Datasets. Data Mining and Knowledge Discovery, 10(2), 141-168. doi:10.1007/s10618-005-0361-3Kaufman, L., & Rousseeuw, P. J. (Eds.). (1990). Finding Groups in Data. Wiley Series in Probability and Statistics. doi:10.1002/9780470316801Karypis, G., Eui-Hong Han, & Kumar, V. (1999). Chameleon: hierarchical clustering using dynamic modeling. Computer, 32(8), 68-75. doi:10.1109/2.781637Cagnina, L., Errecalde, M., Ingaramo, D., & Rosso, P. (2014). An efficient Particle Swarm Optimization approach to cluster short texts. Information Sciences, 265, 36-49. doi:10.1016/j.ins.2013.12.010He, H., Chen, B., Xu, W., & Guo, J. (2007). Short Text Feature Extraction and Clustering for Web Topic Mining. Third International Conference on Semantics, Knowledge and Grid (SKG 2007). doi:10.1109/skg.2007.76Spearman, C. (1904). The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15(1), 72. doi:10.2307/1412159Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. doi:10.1016/0377-0427(87)90125-7Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to Information Retrieval. doi:10.1017/cbo9780511809071Qi, G.-J., Aggarwal, C. C., & Huang, T. (2012). Community Detection with Edge Content in Social Media Networks. 2012 IEEE 28th International Conference on Data Engineering. doi:10.1109/icde.2012.77Daxin Jiang, Jian Pei, & Aidong Zhang. (s. f.). DHC: a density-based hierarchical clustering method for time series gene expression data. Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings. doi:10.1109/bibe.2003.1188978Charikar, M., Chekuri, C., Feder, T., & Motwani, R. (2004). Incremental Clustering and Dynamic Information Retrieval. SIAM Journal on Computing, 33(6), 1417-1440. doi:10.1137/s0097539702418498Selim, S. Z., & Alsultan, K. (1991). A simulated annealing algorithm for the clustering problem. Pattern Recognition, 24(10), 1003-1008. doi:10.1016/0031-3203(91)90097-oAranganayagi, S., & Thangavel, K. (2007). Clustering Categorical Data Using Silhouette Coefficient as a Relocating Measure. International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007). doi:10.1109/iccima.2007.328Makagonov, P., Alexandrov, M., & Gelbukh, A. (2004). Clustering Abstracts Instead of Full Texts. Lecture Notes in Computer Science, 129-135. doi:10.1007/978-3-540-30120-2_17Jing L. 2005. Survey of text clustering. Technical report. Department of Mathematics. The University of Hong Kong, Hong Kong, China.Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.xHearst, M. A. (2006). Clustering versus faceted categories for information exploration. Communications of the ACM, 49(4), 59. doi:10.1145/1121949.1121983Alexandrov, M., Gelbukh, A., & Rosso, P. (2005). An Approach to Clustering Abstracts. Lecture Notes in Computer Science, 275-285. doi:10.1007/11428817_25Dos Santos, J. B., Heuser, C. A., Moreira, V. P., & Wives, L. K. (2011). Automatic threshold estimation for data matching applications. Information Sciences, 181(13), 2685-2699. doi:10.1016/j.ins.2010.05.029Hasan, M. A., Chaoji, V., Salem, S., & Zaki, M. J. (2009). Robust partitional clustering by outlier and density insensitive seeding. Pattern Recognition Letters, 30(11), 994-1002. doi:10.1016/j.patrec.2009.04.013Dunn†, J. C. (1974). Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of Cybernetics, 4(1), 95-104. doi:10.1080/01969727408546059Carullo, M., Binaghi, E., & Gallo, I. (2009). An online document clustering technique for short web contents. Pattern Recognition Letters, 30(10), 870-876. doi:10.1016/j.patrec.2009.04.001Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583-621. doi:10.1080/01621459.1952.10483441Bezdek, J. C., & Pal, N. R. (s. f.). Cluster validation with generalized Dunn’s indices. Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems. doi:10.1109/annes.1995.499469Brun, M., Sima, C., Hua, J., Lowey, J., Carroll, B., Suh, E., & Dougherty, E. R. (2007). Model-based evaluation of clustering validation measures. Pattern Recognition, 40(3), 807-824. doi:10.1016/j.patcog.2006.06.026Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2), 224-227. doi:10.1109/tpami.1979.4766909Pinto, D., & Rosso, P. (s. f.). On the Relative Hardness of Clustering Corpora. Lecture Notes in Computer Science, 155-161. doi:10.1007/978-3-540-74628-7_22Pons-Porrata, A., Berlanga-Llavori, R., & Ruiz-Shulcloper, J. (2007). Topic discovery based on text mining techniques. Information Processing & Management, 43(3), 752-768. doi:10.1016/j.ipm.2006.06.001Pinto, D., Benedí, J.-M., & Rosso, P. (2007). Clustering Narrow-Domain Short Texts by Using the Kullback-Leibler Distance. Lecture Notes in Computer Science, 611-622. doi:10.1007/978-3-540-70939-8_5

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). METHODS/DESIGN: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH2O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure 6430 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. DISCUSSION: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration metho

    Characterising the biophysical properties of normal and hyperkeratotic foot skin

    Get PDF
    BACKGROUND: Plantar foot skin exhibits unique biophysical properties that are distinct from skin on other areas of the body. This paper characterises, using non-invasive methods, the biophysical properties of foot skin in healthy and pathological states including xerosis, heel fissures, calluses and corns. METHODS: Ninety three people participated. Skin hydration, elasticity, collagen and elastin fibre organisation and surface texture was measured from plantar calluses, corns, fissured heel skin and xerotic heel skin. Previously published criteria were applied to classify the severity of each skin lesion and differences in the biophysical properties compared between each classification. RESULTS: Calluses, corns, xerotic heel skin and heel fissures had significantly lower levels of hydration; less elasticity and greater surface texture than unaffected skin sites (p < 0.01). Some evidence was found for a positive correlation between hydration and elasticity data (r ≤ 0.65) at hyperkeratotic sites. Significant differences in skin properties (with the exception of texture) were noted between different classifications of skin lesion. CONCLUSIONS: This study provides benchmark data for healthy and different severities of pathological foot skin. These data have applications ranging from monitoring the quality of foot skin, to measuring the efficacy of therapeutic interventions. KEYWORDS: Biophysical parameters; Callus; Corns; Dry skin; Heel fissures; Plantar foot skin hyperkeratosis; Quantification; Skin classification (SELs); Xerosi

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt
    corecore