4,198 research outputs found
Nuevas soluciones a viejos problemas: taxones de amplia distribución, distribuciones redundantes y áreas ausentes en la biogeografía cladista de procesos
Area cladograms are widely used in historical biogeography to summarize area relationships. Constructing such cladograms is complicated by the existence of widespread taxa (terminal taxa distributed in more than one area), redundant distributions (areas harboring more than one taxon) and missing areas (areas of interest absent from some of the compared cladograms). These problems have traditionally been dealt with using Assumptions 0, 1, and 2, but the assumptions are inapplicable to event–based methods of biogeographic analysis because they do not specify the costs of alternative solutions and may result in non–overlapping solution sets. The present paper presents the argument that only widespread terminals pose a problem to event–based methods, and three possible solutions are described. Under the recent option, the widespread distribution is assumed to be the result of recent dispersal. The ancient option assumes that the widespread distribution is the result of a failure to vicariate, and explains any mismatch between the distribution and the area cladogram by extinction. The free option treats the widespread taxon as an unresolved higher taxon consisting of one lineage occurring in each area, and permits any combination of events and any resolution of the terminal polytomy in explaining the widespread distribution. Algorithms implementing these options are described and applied to Rosen (1978)’s classical data set on Heterandria and Xiphophorus.El análisis biogeográfico cladista se basa en la comparación de cladogramas de áreas de organismos que habitan una misma región (sustituyendo el nombre de los taxones en la filogenia por las áreas que éstos ocupan) para obtener un patrón común, el cladograma general de áreas. La construcción del cladograma de áreas se complica cuando existen taxones presentes en más de un área de distribución (“taxones de amplia distribución”), áreas que albergan más de un taxón (“distribuciones redundantes”), o áreas que no están presentes en alguno de los grupos (“áreas ausentes”). En biogeografía cladista de procesos, los taxones de amplia distribución se resuelven aplicando las Asunciones: 0, 1, y 2, que difieren en la relación cladogenética permitida entre las áreas donde se distribuye el taxon. Se proponen tres nuevas soluciones para abordar este problema dentro de un nuevo enfoque en biogeografía cladista que incorpora los procesos al análisis biogeográfico: “biogeografía cladista de procesos”. Estas opciones difieren no sólo en las relaciones entre las áreas implicadas sino ambién en los procesos biogeográficos que pudieron haber dado lugar a la distribución. La opción recent considera la amplia distribución como si fuera de origen reciente y la explica por dispersión. La opción ancient considera que la amplia distribución es ancestral y la explica mediante vicarianza y extinción. La opción free considera la amplia distribución como un taxón de alto rango con un linaje en cada una de las áreas implicadas y cuyas relaciones no han sido establecidas, permitiendo cualquier combinación de procesos biogeográficos y cualquier solución de la politomía para explicar la distribución. Se comparan estas opciones utilizando el famoso análisis de Rosen (1978) sobre Heterandria y Xiphophorus. También se discute brevemente como tratar las distribuciones redundantes y las áreas usentes dentro de este nuevo enfoque
Unifying Parsimonious Tree Reconciliation
Evolution is a process that is influenced by various environmental factors,
e.g. the interactions between different species, genes, and biogeographical
properties. Hence, it is interesting to study the combined evolutionary history
of multiple species, their genes, and the environment they live in. A common
approach to address this research problem is to describe each individual
evolution as a phylogenetic tree and construct a tree reconciliation which is
parsimonious with respect to a given event model. Unfortunately, most of the
previous approaches are designed only either for host-parasite systems, for
gene tree/species tree reconciliation, or biogeography. Hence, a method is
desirable, which addresses the general problem of mapping phylogenetic trees
and covering all varieties of coevolving systems, including e.g., predator-prey
and symbiotic relationships. To overcome this gap, we introduce a generalized
cophylogenetic event model considering the combinatorial complete set of local
coevolutionary events. We give a dynamic programming based heuristic for
solving the maximum parsimony reconciliation problem in time O(n^2), for two
phylogenies each with at most n leaves. Furthermore, we present an exact
branch-and-bound algorithm which uses the results from the dynamic programming
heuristic for discarding partial reconciliations. The approach has been
implemented as a Java application which is freely available from
http://pacosy.informatik.uni-leipzig.de/coresym.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops
Summary: TOPALi v2 simplifies and automates the use of several methods for the evolutionary analysis of multiple sequence alignments. Jobs are submitted from a Java graphical user interface as TOPALi web services to either run remotely on high-performance computing clusters or locally (with multiple cores supported). Methods available include model selection and phylogenetic tree estimation using the Bayesian inference and maximum likelihood (ML) approaches, in addition to recombination detection methods. The optimal substitution model can be selected for protein or nucleic acid (standard, or protein-coding using a codon position model) data using accurate statistical criteria derived from ML co-estimation of the tree and the substitution model. Phylogenetic software available includes PhyML, RAxML and MrBayes
Diversity of Zoanthids (Anthozoa: Hexacorallia) on Hawaiian Seamounts: Description of the Hawaiian Gold Coral and Additional Zoanthids
The Hawaiian gold coral has a history of exploitation from the deep slopes and seamounts of the Hawaiian Islands as one of the precious corals commercialised in the jewellery industry. Due to its peculiar characteristic of building a scleroproteic skeleton, this zoanthid has been referred as Gerardia sp. (a junior synonym of Savalia Nardo, 1844) but never formally described or examined by taxonomists despite its commercial interest. While collection of Hawaiian gold coral is now regulated, globally seamounts habitats are increasingly threatened by a variety of anthropogenic impacts. However, impact assessment studies and conservation measures cannot be taken without consistent knowledge of the biodiversity of such environments. Recently, multiple samples of octocoral-associated zoanthids were collected from the deep slopes of the islands and seamounts of the Hawaiian Archipelago. The molecular and morphological examination of these zoanthids revealed the presence of at least five different species including the gold coral. Among these only the gold coral appeared to create its own skeleton, two other species are simply using the octocoral as substrate, and the situation is not clear for the final two species. Phylogenetically, all these species appear related to zoanthids of the genus Savalia as well as to the octocoral-associated zoanthid Corallizoanthus tsukaharai, suggesting a common ancestor to all octocoral-associated zoanthids. The diversity of zoanthids described or observed during this study is comparable to levels of diversity found in shallow water tropical coral reefs. Such unexpected species diversity is symptomatic of the lack of biological exploration and taxonomic studies of the diversity of seamount hexacorals
Optimizing insect metabarcoding using replicated mock communities
1. Metabarcoding (high-throughput sequencing of marker gene amplicons) has emerged as a promising and cost-effective method for characterizing insect community samples. Yet, the methodology varies greatly among studies and its performance has not been systematically evaluated to date. In particular, it is unclear how accurately metabarcoding can resolve species communities in terms of presence-absence, abundance and biomass.2. Here we use mock community experiments and a simple probabilistic model to evaluate the effect of different DNA extraction protocols on metabarcoding performance. Specifically, we ask four questions: (Q1) How consistent are the recovered community profiles across replicate mock communities?; (Q2) How does the choice of lysis buffer affect the recovery of the original community?; (Q3) How are community estimates affected by differing lysis times and homogenization? and (Q4) Is it possible to obtain adequate species abundance estimates through the use of biological spike-ins?3. We show that estimates are quite variable across community replicates. In general, a mild lysis protocol is better at reconstructing species lists and approximate counts, while homogenization is better at retrieving biomass composition. Small insects are more likely to be detected in lysates, while some tough species require homogenization to be detected. Results are less consistent across biological replicates for lysates than for homogenates. Some species are associated with strong PCR amplification bias, which complicates the reconstruction of species counts. Yet, with adequate spike -in data, species abundance can be determined with roughly 40% standard error for homogenates, and with roughly 50% standard error for lysates, under ideal conditions. In the latter case, however, this often requires species-specific reference data, while spike -in data generalize better across species for homogenates.4. We conclude that a nondestructive, mild lysis approach shows the highest promise for the presence/absence description of the community, while also allowing future morphological or molecular work on the material. However, homogeniza- tion protocols perform better for characterizing community composition, in par- ticular in terms of biomass
Partitional clustering of protein sequences - An inductive logic programming approach
We present a novel approach to cluster sets of protein sequences, based on Inductive Logic Programming (ILP). Preliminary results show that; the method proposed Produces understand able descriptions/explanations of the clusters. Furthermore, it can be used as a knowledge elicitation tool to explain clusters proposed by other clustering approaches, such as standard phylogenetic programs
Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)
Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef
building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary
relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders,
families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the
stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous
data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various
outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ßtubulin,
ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be
polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly
divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have
lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also
often by morphological characters which had been ignored or never noted previously. The concordance of molecular
characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as
the potential to trace the evolutionary history of this ecologically important group using fossils
- …