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Abstract. We present a novel approach to cluster sets of protein se-
quences, based on Inductive Logic Programming (ILP). Preliminary re-
sults show that the method proposed produces understandable descrip-
tions/explanations of the clusters. Furthermore, it can be used as a
knowledge elicitation tool to explain clusters proposed by other clus-
tering approaches, such as standard phylogenetic programs.
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1 Introduction

Inductive Logic Programming (ILP) is a machine learning method for discovering
logical rules from examples and relevant domain knowledge. There are two major
motivations for the use of ILP. First, ILP provides an excellent framework for
learning in multi-relational domains. Relations are often used to encode complex
structured objects, which may have various number of attributes and which
may interact with each other. Second, the models learnt by general purpose ILP
systems are in a high-level formalism often understandable and meaningful for
the domain experts.

In this paper we describe how ILP can be applied to cluster protein sequences.
We focus on two key points: features that can be used to describe protein se-
quences; and estimation of the distance between two sequences using multiple
features. Moreover, we present preliminary results on two data sets.

2 Clustering Protein Sequences

Our approach relies on ILP to obtain a set of features of interest4 associated
to each sequence. Following a significant body of work in ILP[1], in our work a
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4 Relevant from the domain expert point of view
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feature corresponds to a clause, and it holds for a sequence if the clause satisfies
the sequence. We followed the approach described in [2] to map each sequence in
a set of features. The partitional clustering algorithm is based on the well-known
Lloyd’s algorithm.

To devise a clustering algorithm it is necessary to define how to estimate a
distance between sequences (objects), more precisely, between the sets of fea-
tures characterising each sequence. We chose a distance widely used within the
Bioinformatics community - the Tanitomo distance or coefficient [3] (also known
as Jaccard index):

m(a, b) =
|Sa ∩ Sb|
|Sa ∪ Sb|

=
|Sa ∩ Sb|

|Sa|+ |Sb| − |Sa ∩ Sb|

where a and b are two sequences and Sa and Sb are, respectively, the set of
features valid for each sequence.

To determine the clustering quality, while searching for a (local) best cluster-
ing, we implemented the following measure from [4] that aims at minimising the
distance within the clusters wc and maximising the distance between clusters
bc:

quality(C) = bc(C)/wc(C)

The features associated to each sequence are of two main types of knowledge:
properties and relations. By properties we mean inherent characteristics of the
protein sequences that can be computed from the sequence. This includes the
isoelectric point, charge, molecular weight, average residue weight, number of
residues, and k-mers (for k > 5 and number of occurrences greater than 10% of
the set of sequences) contained in the sequence. The properties are computed
using utilities available in EMBOSS [5] and for the k-mers we use wd [6]. The
features involving relations encompass similarity between sequences in the data
set (computed using Blast), and gene ontology (GO) annotations of similar se-
quences in NCBI. To obtain GO annotations for a sequence, the NCBI database
is queried for similar sequences and then GO annotation information is gathered
using the Blast2GO software [7].

In general, a cluster may have more than a single explanation, i.e., different
features of the examples can justify the cluster. Arguably, the features over-
represented may help, or even be sufficient to understand a cluster. We therefore
want to look for features that are most likely to have a different distribution
in the cluster. To this end we followed a widely used way to estimate distances
between distributions, the Kullback-Leibler (KL) divergence:

DKL(P ‖ Q) = P
log(P )
log(Q)

+ (1− P )
log(1− P )
log(1−Q)

where Q is the probability of a feature being found in the whole set of sequences
and P is the probability that a feature being found in the cluster. Therefore,
each cluster is represented by the feature with higher KL divergence.



3 Preliminary Experiments and Results

The goal of the experiments was two fold: i) determine to what extent the clus-
terings created are meaningful for a molecular biologist; ii) assess the differences,
if any, between the clusters produced and the groups suggested by a phyloge-
netic approach. Two data sets of protein sequences were considered: the serpin
data set with 66 serpin genes from human and insect; and the human serpin
data set composed by the 35 human serpin genes from the serpin data set.
The sequences in the data sets are very divergent. The average level of identity
between each sequence in the human serpin data set is 31%, and is considerable
less in the serpin data set.

In the serpin data set we would expect a clustering that partitions the data
set into a cluster of human and a cluster of insect serpines. The clustering, when
considering three groups, splits the data set into two homogeneous clusters of
7 and 6 sequences from insects and a third cluster containing the remaining
sequences of insects and human serpines. The majority of interesting rules on
each cluster include k-mers information. For instance, the rule has word fkgqwk
is observed exclusively in all elements of the cluster containing 7 sequences.

For the human serpin data set, a clustering partitions the set of sequences
into two clusters: the cluster1 contains the sequences SA1, SA3, SI2, SB4, SB12,
SB8, SB2, SB13, SB10, SB6, SI1, SB9, and SA2; and the cluster2 with the
remaining sequences. The two clusters are overlapped in a phylogenetic tree (see
Figure 1). There is not a clear match between the clusters proposed and the
groups in the tree. However, cluster1 has a good coverage of the group G2 in
the phylogenetic tree. The cluster1 is characterised by all sequences in the group
having an isoeletric point below 6.1313 - this characteristic is only observed in
two sequences of group 2 (SB5 and SA6).

When we try to get an explanation for the well defined phylogenetic groups
in the phylogenetic tree (G1, G2, and G3), the majority of the interesting rules
involve the sequences having a k-mer. For instance, the rule has word gfqhl is
observed exclusively in four sequences (SA9, SA6, SA4, and SA7) of group G3.

The results presented although preliminary are encouraging. We plan to pro-
ceed by performing some refinements in the current implementation and a more
in depth empirical evaluation.
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Fig. 1. Phylogenetic tree produced by MrBayes [8] for the human serpin data set.
Each serpin is identified in the tree by its clade (A, B, . . . ) and membership (1,2, . . . ).
The input alignment for MrBayes was produced by the Accurate mode of T-Coffee [9].
Circled names belong to cluster 1, non-circled ones belong to cluster 2.
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