6,820 research outputs found

    Crossing pedestrian traffic flows,diagonal stripe pattern, and chevron effect

    Full text link
    We study two perpendicular intersecting flows of pedestrians. The latter are represented either by moving hard core particles of two types, eastbound (\symbp) and northbound (\symbm), or by two density fields, \rhop_t(\brr) and \rhom_t(\brr). Each flow takes place on a lattice strip of width MM so that the intersection is an M×MM\times M square. We investigate the spontaneous formation, observed experimentally and in simulations, of a diagonal pattern of stripes in which alternatingly one of the two particle types dominates. By a linear stability analysis of the field equations we show how this pattern formation comes about. We focus on the observation, reported recently, that the striped pattern actually consists of chevrons rather than straight lines. We demonstrate that this `chevron effect' occurs both in particle simulations with various different update schemes and in field simulations. We quantify the effect in terms of the chevron angle Δθ0\Delta\theta_0 and determine its dependency on the parameters governing the boundary conditions.Comment: 36 pages, 22 figure

    Enabling Personalized Composition and Adaptive Provisioning of Web Services

    Get PDF
    The proliferation of interconnected computing devices is fostering the emergence of environments where Web services made available to mobile users are a commodity. Unfortunately, inherent limitations of mobile devices still hinder the seamless access to Web services, and their use in supporting complex user activities. In this paper, we describe the design and implementation of a distributed, adaptive, and context-aware framework for personalized service composition and provisioning adapted to mobile users. Users specify their preferences by annotating existing process templates, leading to personalized service-based processes. To cater for the possibility of low bandwidth communication channels and frequent disconnections, an execution model is proposed whereby the responsibility of orchestrating personalized processes is spread across the participating services and user agents. In addition, the execution model is adaptive in the sense that the runtime environment is able to detect exceptions and react to them according to a set of rules

    A Requirement-centric Approach to Web Service Modeling, Discovery, and Selection

    Get PDF
    Service-Oriented Computing (SOC) has gained considerable popularity for implementing Service-Based Applications (SBAs) in a flexible\ud and effective manner. The basic idea of SOC is to understand users'\ud requirements for SBAs first, and then discover and select relevant\ud services (i.e., that fit closely functional requirements) and offer\ud a high Quality of Service (QoS). Understanding users’ requirements\ud is already achieved by existing requirement engineering approaches\ud (e.g., TROPOS, KAOS, and MAP) which model SBAs in a requirement-driven\ud manner. However, discovering and selecting relevant and high QoS\ud services are still challenging tasks that require time and effort\ud due to the increasing number of available Web services. In this paper,\ud we propose a requirement-centric approach which allows: (i) modeling\ud users’ requirements for SBAs with the MAP formalism and specifying\ud required services using an Intentional Service Model (ISM); (ii)\ud discovering services by querying the Web service search engine Service-Finder\ud and using keywords extracted from the specifications provided by\ud the ISM; and(iii) selecting automatically relevant and high QoS services\ud by applying Formal Concept Analysis (FCA). We validate our approach\ud by performing experiments on an e-books application. The experimental\ud results show that our approach allows the selection of relevant and\ud high QoS services with a high accuracy (the average precision is\ud 89.41%) and efficiency (the average recall is 95.43%)

    Effects of burying and removing dead leaves from the ground on the development of scab epidemics in an apple organic orchard.

    Get PDF
    Ascospores produced on scabbed leaves in the leaf litter constitute the primary inoculum causing scab infections in apple orchards during the year. The trial, carried out in a commercial organic orchard, permitted to evaluate the effects of the removal of dead leaves located on the inter-row supplemented by the ploughing in of the leaves left on the row, on the development of scab epidemics. From the first recorded contamination to harvest time, lesions on leaves and fruits were counted to determine reduction in disease incidence and severity, compared with the untreated plots. Disease severity as a function of the distance from the untreated plot was also observed, to evaluate the spore dispersal gradient within the orchard. The results show that the ploughing in and the removal of the litter reduced disease incidence by 62% on leaves, and by almost 82% on fruits to harvest. Moreover, measurements of the dispersal gradient show that the spores do not disperse, or little, beyond 20m of the untreated zone

    Properties of pedestrians walking in line: Stepping behavior

    Full text link
    In human crowds, interactions among individuals give rise to a variety of self-organized collective motions that help the group to effectively solve the problem of coordination. However, it is still not known exactly how humans adjust their behavior locally, nor what are the direct consequences on the emergent organization. One of the underlying mechanisms of adjusting individual motions is the stepping dynamics. In this paper, we present first quantitative analysis on the stepping behavior in a one-dimensional pedestrian flow studied under controlled laboratory conditions. We find that the step length is proportional to the velocity of the pedestrian, and is directly related to the space available in front of him, while the variations of the step duration are much smaller. This is in contrast with locomotion studies performed on isolated pedestrians and shows that the local density has a direct influence on the stepping characteristics. Furthermore, we study the phenomena of synchronization -walking in lockstep- and show its dependence on flow densities. We show that the synchronization of steps is particularly important at high densities, which has direct impact on the studies of optimizing pedestrians flow in congested situations. However, small synchronization and antisynchronization effects are found also at very low densities, for which no steric constraints exist between successive pedestrians, showing the natural tendency to synchronize according to perceived visual signals.Comment: 8 pages, 5 figure

    Particle interactions and lattice dynamics: Scenarios for efficient bidirectional stochastic transport?

    Full text link
    Intracellular transport processes driven by molecular motors can be described by stochastic lattice models of self-driven particles. Here we focus on bidirectional transport models excluding the exchange of particles on the same track. We explore the possibility to have efficient transport in these systems. One possibility would be to have appropriate interactions between the various motors' species, so as to form lanes. However, we show that the lane formation mechanism based on modified attachment/detachment rates as it was proposed previously is not necessarily connected to an efficient transport state and is suppressed when the diffusivity of unbound particles is finite. We propose another interaction mechanism based on obstacle avoidance that allows to have lane formation for limited diffusion. Besides, we had shown in a separate paper that the dynamics of the lattice itself could be a key ingredient for the efficiency of bidirectional transport. Here we show that lattice dynamics and interactions can both contribute in a cooperative way to the efficiency of transport. In particular, lattice dynamics can decrease the interaction threshold beyond which lanes form. Lattice dynamics may also enhance the transport capacity of the system even when lane formation is suppressed.Comment: 25 pages, 17 figures, 2 table

    Continuous and first-order jamming transition in crossing pedestrian traffic flows

    Full text link
    After reviewing the main results obtained within a model for the intersection of two perpendicular flows of pedestrians, we present a new finding: the changeover of the jamming transition from continuous to first order when the size of the intersection area increases.Comment: 14 pages, 9 figure
    corecore