6,820 research outputs found
The effect of very low-calorie diets on renal and hepatic outcomes : a systematic review
Peer reviewedPublisher PD
Crossing pedestrian traffic flows,diagonal stripe pattern, and chevron effect
We study two perpendicular intersecting flows of pedestrians. The latter are
represented either by moving hard core particles of two types, eastbound
(\symbp) and northbound (\symbm), or by two density fields, \rhop_t(\brr)
and \rhom_t(\brr). Each flow takes place on a lattice strip of width so
that the intersection is an square. We investigate the spontaneous
formation, observed experimentally and in simulations, of a diagonal pattern of
stripes in which alternatingly one of the two particle types dominates. By a
linear stability analysis of the field equations we show how this pattern
formation comes about. We focus on the observation, reported recently, that the
striped pattern actually consists of chevrons rather than straight lines. We
demonstrate that this `chevron effect' occurs both in particle simulations with
various different update schemes and in field simulations. We quantify the
effect in terms of the chevron angle and determine its
dependency on the parameters governing the boundary conditions.Comment: 36 pages, 22 figure
Enabling Personalized Composition and Adaptive Provisioning of Web Services
The proliferation of interconnected computing devices is fostering the emergence of environments where Web services made available to mobile users are a commodity. Unfortunately, inherent limitations of mobile devices still hinder the seamless access to Web services, and their use in supporting complex user activities. In this paper, we describe the design and implementation of a distributed, adaptive, and context-aware framework for personalized service composition and provisioning adapted to mobile users. Users specify their preferences by annotating existing process templates, leading to personalized service-based processes. To cater for the possibility of low bandwidth communication channels and frequent disconnections, an execution model is proposed whereby the responsibility of orchestrating personalized processes is spread across the participating services and user agents. In addition, the execution model is adaptive in the sense that the runtime environment is able to detect exceptions and react to them according to a set of rules
A Requirement-centric Approach to Web Service Modeling, Discovery, and Selection
Service-Oriented Computing (SOC) has gained considerable popularity for implementing Service-Based Applications (SBAs) in a flexible\ud
and effective manner. The basic idea of SOC is to understand users'\ud
requirements for SBAs first, and then discover and select relevant\ud
services (i.e., that fit closely functional requirements) and offer\ud
a high Quality of Service (QoS). Understanding users requirements\ud
is already achieved by existing requirement engineering approaches\ud
(e.g., TROPOS, KAOS, and MAP) which model SBAs in a requirement-driven\ud
manner. However, discovering and selecting relevant and high QoS\ud
services are still challenging tasks that require time and effort\ud
due to the increasing number of available Web services. In this paper,\ud
we propose a requirement-centric approach which allows: (i) modeling\ud
users requirements for SBAs with the MAP formalism and specifying\ud
required services using an Intentional Service Model (ISM); (ii)\ud
discovering services by querying the Web service search engine Service-Finder\ud
and using keywords extracted from the specifications provided by\ud
the ISM; and(iii) selecting automatically relevant and high QoS services\ud
by applying Formal Concept Analysis (FCA). We validate our approach\ud
by performing experiments on an e-books application. The experimental\ud
results show that our approach allows the selection of relevant and\ud
high QoS services with a high accuracy (the average precision is\ud
89.41%) and efficiency (the average recall is 95.43%)
Effects of burying and removing dead leaves from the ground on the development of scab epidemics in an apple organic orchard.
Ascospores produced on scabbed leaves in the leaf litter constitute the primary
inoculum causing scab infections in apple orchards during the year. The trial, carried
out in a commercial organic orchard, permitted to evaluate the effects of the
removal of dead leaves located on the inter-row supplemented by the ploughing in of
the leaves left on the row, on the development of scab epidemics. From the first
recorded contamination to harvest time, lesions on leaves and fruits were counted to
determine reduction in disease incidence and severity, compared with the untreated
plots. Disease severity as a function of the distance from the untreated plot was also
observed, to evaluate the spore dispersal gradient within the orchard. The results
show that the ploughing in and the removal of the litter reduced disease incidence by
62% on leaves, and by almost 82% on fruits to harvest. Moreover, measurements of
the dispersal gradient show that the spores do not disperse, or little, beyond 20m of
the untreated zone
Properties of pedestrians walking in line: Stepping behavior
In human crowds, interactions among individuals give rise to a variety of
self-organized collective motions that help the group to effectively solve the
problem of coordination. However, it is still not known exactly how humans
adjust their behavior locally, nor what are the direct consequences on the
emergent organization. One of the underlying mechanisms of adjusting individual
motions is the stepping dynamics. In this paper, we present first quantitative
analysis on the stepping behavior in a one-dimensional pedestrian flow studied
under controlled laboratory conditions. We find that the step length is
proportional to the velocity of the pedestrian, and is directly related to the
space available in front of him, while the variations of the step duration are
much smaller. This is in contrast with locomotion studies performed on isolated
pedestrians and shows that the local density has a direct influence on the
stepping characteristics. Furthermore, we study the phenomena of
synchronization -walking in lockstep- and show its dependence on flow
densities. We show that the synchronization of steps is particularly important
at high densities, which has direct impact on the studies of optimizing
pedestrians flow in congested situations. However, small synchronization and
antisynchronization effects are found also at very low densities, for which no
steric constraints exist between successive pedestrians, showing the natural
tendency to synchronize according to perceived visual signals.Comment: 8 pages, 5 figure
Particle interactions and lattice dynamics: Scenarios for efficient bidirectional stochastic transport?
Intracellular transport processes driven by molecular motors can be described
by stochastic lattice models of self-driven particles. Here we focus on
bidirectional transport models excluding the exchange of particles on the same
track. We explore the possibility to have efficient transport in these systems.
One possibility would be to have appropriate interactions between the various
motors' species, so as to form lanes. However, we show that the lane formation
mechanism based on modified attachment/detachment rates as it was proposed
previously is not necessarily connected to an efficient transport state and is
suppressed when the diffusivity of unbound particles is finite. We propose
another interaction mechanism based on obstacle avoidance that allows to have
lane formation for limited diffusion. Besides, we had shown in a separate paper
that the dynamics of the lattice itself could be a key ingredient for the
efficiency of bidirectional transport. Here we show that lattice dynamics and
interactions can both contribute in a cooperative way to the efficiency of
transport. In particular, lattice dynamics can decrease the interaction
threshold beyond which lanes form. Lattice dynamics may also enhance the
transport capacity of the system even when lane formation is suppressed.Comment: 25 pages, 17 figures, 2 table
Continuous and first-order jamming transition in crossing pedestrian traffic flows
After reviewing the main results obtained within a model for the intersection
of two perpendicular flows of pedestrians, we present a new finding: the
changeover of the jamming transition from continuous to first order when the
size of the intersection area increases.Comment: 14 pages, 9 figure
- …
