
Enabling Personalized Composition

and Adaptive Provisioning of Web Services

Quan Z. Sheng1, Boualem Benatallah1, Zakaria Maamar2,
Marlon Dumas3, and Anne H.H. Ngu4

1 School of Computer Science and Engineering
The University of New South Wales, Sydney, Australia

2 College of Information Systems
Zayed University, Dubai, U.A.E

3 Centre for Information Technology Innovation
Queensland University of Technology, Brisbane, Australia

4 Department of Computer Science
Texas State University, San Marcos, Texas, USA

Abstract. The proliferation of interconnected computing devices is fos-
tering the emergence of environments where Web services made available
to mobile users are a commodity. Unfortunately, inherent limitations of
mobile devices still hinder the seamless access to Web services, and their
use in supporting complex user activities. In this paper, we describe the
design and implementation of a distributed, adaptive, and context-aware
framework for personalized service composition and provisioning adapted
to mobile users. Users specify their preferences by annotating existing
process templates, leading to personalized service-based processes. To
cater for the possibility of low bandwidth communication channels and
frequent disconnections, an execution model is proposed whereby the re-
sponsibility of orchestrating personalized processes is spread across the
participating services and user agents. In addition, the execution model
is adaptive in the sense that the runtime environment is able to detect
exceptions and react to them according to a set of rules.

1 Introduction

Web services are self-describing, open components that support programmatic
access to Web accessible data sources and applications. Web services are also
poised to become accessible from mobile devices [1], as the proliferation of such
devices (e.g., laptops, PDAs, 3G mobile phones) and the deployment of more
sophisticated wireless communication infrastructures (e.g., GPRS and UMTS),
are empowering the Web with the ability to deliver data and functionality to
mobile users. For example, business travelers now expect to be able to access their
corporate servers, enterprise portals, e-mail, and other collaboration services
while on the move.

However, several obstacles still hinder the seamless provisioning of Web ser-
vices in wireless environments. Indeed, current Web service provisioning tech-

dumas
Proceedings of the 16th International Conference on Advanced Information Systems Engineering (CAiSE'2004). Riga, Latvia, June 7-11 2004. Copyright Springer Verlag.

niques are inappropriate because of the distinguishing features and inherent lim-
itations of wireless environments such as low throughput and poor connectivity
of wireless networks, limited computing resources, and frequent disconnections
of mobile devices. In addition, the variability in computing resources, display
terminal, and communication channel require intelligent support for personal-
ized and timely delivery of relevant data to users [2]. Examples of issues that
need to be addressed in order to make the service-oriented computing paradigm
of real benefit to mobile users include:

– Personalized composition of services. Like their non-mobile counter-
parts (i.e., stationary users), mobile users also require an integrated access
to relevant services. Indeed, the provision of Web services for mobile users
tends to be time and location sensitive, meaning that the mobile users might
need to invoke particular services in a certain period and/or a certain place.
For example, a student will need the class assistant service only when she
is attending a class. Service selection, composition, and orchestration should
take in consideration the context of the service provisioning environment
(e.g., CPU, bandwidth, state of the user) and the user preferences.

– Limited resources and wide heterogeneity of mobile devices. Mobile
devices normally posses limited battery power and input capabilities. There-
fore, mobile devices are better suited as passive listeners (e.g., receiving the
service results) than as active tools for service invocation (e.g., searching for
the service and sending the request) [3]. Furthermore, the provisioning of
services should consider the location of the user. The Web services near her
current location should be selected or only the highly customized content
should be delivered (e.g., the closest restaurant).

– Robust service execution. Numerous situations could prevent a smooth
execution of Web services in wireless environments. Indeed, obstacles can
range from the dynamic nature of the Web services such as changes of Qual-
ity of Service (QoS) to the characteristics of mobile devices like frequent
disconnections. We believe that services should be self-managed to support
their adaptive execution over the Internet. To facilitate the robust execu-
tion of services, it is necessary to provide the capabilities for detecting the
exceptions at run-time so that appropriate actions can be promptly taken.

The aforementioned challenges call for novel approaches to support dynamic
and adaptive Web service provisioning in wireless environments. As a contri-
bution toward this aim, this paper presents the design and implementation of
PCAP: a framework for Personalized Composition and Adaptive Provisioning
of Web services. This framework provides a distributed, adaptive, and context-
aware infrastructure for personalized composite service provisioning, which takes
into account the needs of mobile users. The salient features of PCAP are:

– A personalized composite service specification infrastructure. Using this in-
frastructure, users specify their needs by reusing and adjusting existing pro-
cess templates, rather than building their own services from scratch. Users

locate process templates and annotate them with contextual information
(e.g., execution time/place), thereby defining personal composite services.

– A self-managed and adaptive service orchestration model. Participating ser-
vices and a user agent, a component that acts on behalf of the user, collabo-
rate with each other for the smooth execution of the personalized composite
services and interact with the user when and where she decides to do so,
achieving the goal of “performing the right task at the right time and at
the right place”. The knowledge that the participating services and the user
agent require is generated based on the context information, the data/control
dependencies, and the user preferences. The model is complemented by the
fact that user agents and services are able to adapt to runtime exceptions
(e.g., service failures) according to exception handling rules.

Section 2 presents the personalized composite service model. Section 3 de-
scribes an orchestration model for the distributed execution of personalized com-
posite services, as well as the dynamic exception handling. The PCAP system
architecture and its implementation are described in Section 4. Finally, Section 5
provides some concluding remarks.

2 Definition of Personal Composite Services

In this section, we first introduce the modeling of process templates and then
describe the configuration of personal composite services.

2.1 Process Templates

Process templates are reusable business process skeletons that are devised to
reach particular goals. For example, a class assistant template enables students
to manage their class activities by composing multiple services like question post-
ing and consultation booking. We specify process templates with statecharts [4].
It should be noted that the process templates developed in the context of state-
charts can be adapted to other process definition languages such as BPEL4WS.

A statechart is made up of states and transitions. The transitions of a state-
chart are labeled with events, conditions, and assignment operations over process
variables. States can be basic or compound. A basic state (also called task in the
rest of the paper) corresponds to the execution of a service (which we call a
component service) or of a member in a Web service community. A service com-
munity is a collection of Web services with a common functionality but different
non-functional properties such as different providers and different QoS parame-
ters. When a community receives a request to execute an operation, the request
is delegated to one of its current members based on a selection strategy [5].
Compound states contain one or several statecharts within them. An example
will be given in Section 2.3.

In process templates, a task t has a set of input and output parameters. We
denote the input (resp., output) as Θi (resp., Θo) where Θi(t) = {i1, i2, . . . , im}
and Θo(t) = {o1, o2, . . . , ok}. The value of a task’s input parameter may be:

i) requested from user during task execution, ii) obtained from the user’s profile,
or iii) obtained as an output of another task. For the first case the following
expression is used: ij :=USER. For the other cases, they are expressed as queries:
ij :=Qj . Queries vary from simple to complex, depending on the application
domain and users’ needs, and can be expressed using languages like XPath.

In our approach, values that users supply as input parameters are handled
differently from the values obtained from user profiles. Indeed, because mobile
devices are resource-constrained, values that can be obtained from user profiles
should not be requested from users. However, in a process template specification,
the template provider only indicates for which input parameters users have to
supply a value. It is the responsibility of the user to specify, during the configu-
ration phase, if the value will be provided manually or derived from her profile.

Similarly, the value of a task’s output parameter may be: i) sent to other
tasks as input parameters, and/or ii) sent to a user in case she wants to know
the execution result of the task. Symbol is used to denote the delivery of
output parameters. For instance, oj {USER} means the value of oj should be
sent to the user. Note that the value of an output parameter can be submitted to
multiple places (e.g., to a task and the user as well). Similar to input parameters,
the provider of a process template does not decide which output parameters need
to be returned.

2.2 Configuration of Personal Composite Services

Personalization implies making adjustment according to user preferences. Three
kinds of user preferences are associated for each process template’s task:

– execution constraints are divided into temporal and spatial constraints, which
respectively indicate when and where the user wants to see a task executed,

– data supply and delivery preferences are related to supplying values to the
input parameters and delivering values of output parameters of the task, and

– execution policies are related to the preferences on service selection (for com-
munities) and service migration during the execution of a task.

Temporal and Spatial Constraints. We denote the temporal and spatial
constraints of a task t as Θt(t) and Θs(t) respectively. Formally, a temporal
constraint is specified as TMP(op, tm), where op is a comparison operator (e.g.,
=, ≤, and between) and tm is either an absolute time, a relative time (e.g.,
termination time of a task), or a time interval in the form of [tm1, tm2]. TMP(op,
tm) means that the task can be triggered only if the condition ct op tm is
evaluated to true. Here, ct denotes the system time. For the sake of simplicity,
we assume that all temporal values are expressed at the same level of granularity.

Similarly, Θs is a spatial constraint specified as SPL(l), meaning that the task
can be fired only when the condition cl IS l is evaluated to true. cl denotes
the current location of the user, and l is a physical location. A location l1 is
considered the same as another location l2 if the distance between two points of
l1 and l2 does not exceed a certain value. We assume that all spatial values are
expressed at the same level of granularity.

It should be noted that the temporal (resp., spatial) constraint can be empty,
meaning that the corresponding task can be executed at anytime (resp., at any-
where). We also assume that the user’s (mobile device) location is collected
periodically by our system. In fact, with the advances in positioning technolo-
gies such as assisted-GPS (A-GPS) [6], we believe that obtaining mobile users
location does not represent an issue anymore.

Data Supply and Delivery Preferences. As stated before, the values of
some input parameters of a task can be obtained from a user’s profile. The user
proceeds in two steps: i) identify which input parameter values can be derived
from her profile, and ii) supply the location of the profile and the corresponding
attribute names. Similarly, for the output parameters of a task, a user may
specify which parameter values need to be delivered to her.

Execution Policies. The execution policies include the service selection policy
and the service migration policy. For a specific task, users can specify how to
select a service for this task. The service can be a fixed one (the task always uses
this service), or can be selected from a specific service community or a public
directory (e.g., UDDI) based on certain criteria (e.g., location of the mobile
user). Furthermore, users can specify whether to migrate the services to their
mobile devices (e.g., if mobile devices have enough computing resources) or to
the sites near the users current location for the execution. Our works on service
selection and migration are described elsewhere [7, 8].

2.3 An Example

The example introduced here is inspired by two recent ubiquitous computing
applications: UIUC’s Gaia [9] and, to a greater extent, UCSD’s ActiveClass [10].
ActiveClass is a novel computing application for enhancing participation of stu-
dents and professors in the classrooms via wireless mobile devices such as PDAs.
ActiveClass provides several distinct features including: i) students are encour-
aged to ask questions anonymously without exposing themselves to the class,
thereby avoiding the problems associated with the traditional practice of raise-
hand-up asking where those students who are diffident are unlikely to ask any
questions; ii) professors are able to choose the questions which are worth to be
answered; and iii) students can vote the questions asked by other students, which
helps the professors to identify the questions of most concern.

Figure 1 is the statechart of a simplified classAssistant process template
that helps students manage their class activities. In this template, an attendance
reminder notifies students about the time and place of the lecture. During the
lecture, when a student wants to ask a question, she first browses the questions
asked by other students using her PDA. Then she decides either to vote for an
already posted question (if her question was already asked by someone else) or
to post her question (if no one has asked a similar question). The student may
ask several questions during the lecture. After the class, a consultation booking
is performed if not all of her questions are answered. In both cases, feedback for
the lecture is provided by the student.

Attendance
 Reminder (AR)

Consultation
Booking (CB)

Lecture
Feedback (LF)

Question
Vote (QV)

Active Class Service (ACS)

Question
Post (QP)

not answered

 answered

Question
Browse (QB)

 posted

 not posted

 hasQuestion

More
Question (MQ)

not
hasQuestion

Fig. 1. classAssistant process template

Task Input Parameters & dependencies Output Parameters & dependencies
AR string subjectID:=doc(PROFILE)/subject1, string lectureTime {USER},

string studentID:=doc(PROFILE)/studentid, string lecturePlace {USER},
integer remindTime:=USER string subjectID {QB, QV, QP, CB, LF}

string studentID {CB}, string professor {CB}
QB string subjectID=doc(rcv(QB))/subjectID, XMLDoc questions {USER}
QV string subjectID=doc(rcv(QV))/subjectID, XMLDoc voteDetails {USER}

string questionID:=USER

QP string subjectID=doc(rcv(QP))/subjectID, XMLDoc postDetails {USER},
string question:=USER

MQ boolean newQuestion:=USER

CB Date preferredDate:=USER, Date consultationDate,
string subjectID=doc(rcv(CB))/subjectID, XMLDoc consultationDetails {USER}
string professor=doc(rcv(CB))/professor
string studentID=doc(rcv(CB))/studentID

LF string subjectID=doc(rcv(LF))/subjectID, XMLDoc commentDetails {USER}
string comments:=USER

Table 1. Data dependencies of the classAssistant process template (see Figure 1)

Now, assume a student, Andrew, is interested in using the classAssistant

process template. First, Andrew has to personalize this template by indicat-
ing his preferences for each task. For instance, because the lecture will be held
from 9am to 11am at Quad01A, Andrew sets the temporal and spatial con-
straints of tasks QB, QV, QP, and MQ to be TMP(between, [9:00 01/01/04,

11:00 01/01/04]) and SPL(Quad01A) respectively.
Table 1 describes the input and output parameters of the personal compos-

ite service. To describe the data supply and delivery preferences, the following
additional notations are used:

– USER denotes an end user (e.g., a student), while PROFILE denotes the XML
document where the user’s profile is stored,

– doc(rcv(CB))/professor is an XPath query and rcv(CB) stands for the
XML document that includes the outputs of other tasks received by CB.
Attribute professor is extracted using this query.

The values of some input parameters are supplied by the user. For instance,
in order to give lecture feedback (task LF), Andrew must input his comments
(e.g., comments). On the other hand, the value of input parameter subjectID of
QB can be derived from the value of output parameter subjectID of AR, which in
fact, is also used to provide the values of the same input parameter of other tasks
(i.e., QV, QP, CB, and LF). Further, Andrew specifies that the input parameter
studentID and subjectID of task AR will be derived from his profile. Andrew

also would like to receive the detailed result (e.g., postDetails) of each task.
It should be noted that there are six conditions in the statechart transitions.
Conditions are modeled as boolean variables, whose values are provided by the
user at runtime.

3 Personal Composite Service Orchestration

During the execution of a composite service, the involved component services
need to coordinate with each other and with the client device in order to en-
sure that the business logic of the composite service is enforced. This process is
often termed orchestration. Existing orchestration models [11, 12] assume that
the connection between the central scheduler and the component services is con-
tinuously available, and that it has the same characteristics (e.g., bandwidth,
reliability) as a connection between two component services. This assumption is
not valid in the case of personal composite services, where executions are initi-
ated and followed up by, and specifically for, a given (possibly mobile) client.
Accordingly, we advocate that in order to achieve robust and smooth execution
of personal composite services in mobile environments, these composite services
should be self-orchestrating: they should be able to coordinate their actions in
an autonomous way, without having to continuously synchronize with the client,
which could lead to idle periods and timeouts due to disconnections.

In our approach, self-orchestration is achieved by encoding the interactions
between services in the form of control tuples which are placed in and retrieved
from tuple spaces. The tuple space model has its origins in the Linda [13] lan-
guage for distributed programming and is recognized as an attractive model
for managing interactions among loosely coupled entities in wireless environ-
ments [2]. Tuple spaces have the advantage of providing direct support for pull-
based asynchronous interactions in which the “sender” (e.g. the client device)
and the “receiver” (e.g. a component service) are separated in both space and
time. This enables mobile users to disconnect at any time, and re-synchronize
with the underlying infrastructure upon reconnection.

3.1 Control Tuples and Compound Transitions

In this section, we define two concepts used in the rest of the paper: control tuple
and compound transition.

Definition 1. A control tuple is a rule of the form Event-Condition-Action
(E[C]A) where:

– E is a conjunction of execution events. The conjunction of two events e1 and
e2 is denoted as e1 ∧ e2 and the semantics is that if an occurrence of e1 and
an occurrence of e2 are registered in any order, then an occurrence of e1 ∧ e2

is generated.
– C is a conjunction of conditions on execution states including event parameter

values and service information (e.g., inputs and outputs of tasks).

– A is a sequence of execution actions a1; a2; . . . ; an. The actions are executed
in the order specified by the sequence. Some selected events and actions sup-
ported in our approach are given in Table 2. �

As discussed earlier, a statechart can have compound states and therefore,
there can be multiple direct and indirect ways of transitioning from a given
basic state to another one. In other words, when exiting a given state, there are
a number of transitions that can be taken, some of which are simple (e.g., the
transition between QV and MQ in Figure 1) and others are compound (e.g., the
transition between MQ and LF). Hence, in order to determine how to route control-
flow notifications and data items between basic states, we need to introduce a
concept of compound transition.

Definition 2. A compound transition CT is a sequence of transitions tr1, tr2,
..., trn belonging to a given statechart, such that:

– source(tr1)
5 is a basic state,

– target(trn) is a basic state, and
– for all i in [1..n-1], either target(tri) is the final state of a region belonging

to the compound state source(tri+1), or source(tri+1) is the initial state of a
region belonging to the compound state target(tri). �

3.2 Service Orchestration Tuples in PCAP

In this section, we present four types of control tuples used to coordinate personal
composite service executions in PCAP, namely precondition tuples, postprocess-
ing tuples, context awareness tuples, and exception handling tuples.

Precondition and Postprocessing Tuples. Determining when should a given
task be activated during the execution of a personal composite service requires
answering the following questions: i) what are the preconditions for executing
this task? and ii) once an execution of this task is completed, which entities
(e.g., other tasks or the user agent) need to be notified of this completion? The
knowledge needed to determine the moment(s) of activation of a task during
an execution of a personal composite service can therefore be captured by two
sets: i) a set of preconditions to be checked before the task is executed; and ii) a
set of so-called postprocessing actions capturing which other tasks may need to
be notified when the execution of a given task is completed. Below, we provide
formal definitions of the concepts of precondition and postprocessing of a task.

Definition 3. The precondition of task t of a personal composite service S is a
set of control tuples such that:

5 Here, source(tr) denotes the source state of transition tr, while target(tr) denotes
the target state of tr.

◦ Events and Descriptions
entered(location l): the user has entered the location l.
disconnected(device d): the device d has disconnected. For example, the user’s mobile device
may be switched off or can not be reached in an uncovered area.
unpresentable(serviceResult r, device d): the service result r is evaluated to be unpresentable
in the user’s device d due to the limited capabilities of the device.
QoSDegraded(service s, QoS q): the QoS q of service s has deteriorated. For example, the
execution time of the service becomes longer.

◦ Actions and Descriptions
notify(task t): send a notification of completion to task t.
transform(serviceResult r, tranformService s, device d): transform service result r using
the transformation service s according to the capabilities of the user’s device d.
informNewLocation(location newL, serviceSet SC): inform the location newL of a user to
the relevant Web services SC.
reassign(service s): delegate the invocation of a service to service s.

Table 2. Selected events and actions supported in PCAP

– E is a conjunction of events of the form ready(Θi(t)) and completed(t′)

where t′ is a task for which there exists a compound transition CT such that
source(CT)=t′ and target(CT)=t. The event completed(t′) is raised when a
notification of completion is received from the controller of t′.

– C is a conjunction of temporal and spatial constraints of t, Θt(t) and Θs(t).
If t does not have any constraint, C is interpreted as true.

– A is an execution action execute(t), which invokes the task t. �

In Andrew’s classAssistant service (see Section 2), the precondition of CB is
expressed as: {ready(Θi(CB))∧completed(MQ)[TMP(≥, 11:10 01/01/04)]ex-

ecute(CB)}, where Θi(CB) is the set of the input parameters of task CB. This
tuple indicates that when all the values of input parameters of CB are available
and MQ is finished, if current time is later than 11:10 01/01/04, the invocation
of CB will start. Note that Andrew did not specify a spatial constraint for CB.

Definition 4. The postprocessing of t of S is a set of control tuples such that:

– E is an event of the form completed(t). The event is generated when the
execution of task t is completed.

– There exists a compound transition CT where source(CT)=t and target(CT)=t′.
– C is Cond(CT), which is the conjunction of the conditions labeling transitions

of CT (i.e., tr1, tr2, . . . , trn), expressed as c1 ∧ c2 ∧ · · · ∧ cn, where ci is the
condition labeling transition tri.

– A is a set of actions of the form notify(t′) and sendResult(o, r), where
o is an output parameter whose value needs to be delivered to a receiver r,
which could be the user or another task of S. �

In the example, the postprocessing of task QP is: {completed(QP)[true]not-
ify(MQ);sendResult(postDetails, Andrew)}. This tuple indicates that when
the execution of QP is completed, task MQ should be notified of this completion
and the value of output parameter postDetails should be sent to Andrew.

The concepts of precondition and postprocessing of a task as defined above
possess two advantageous features. Firstly, the knowledge (i.e., precondition and

postprocessing) of the execution of a task is expressed in the form of tuples,
which provide the possibility to store and operate the knowledge using powerful
coordination models such as tuple spaces. Life cycle information can be associ-
ated with tuples, indicating how long a tuple should be made available in the
tuple space. Thus, the potential overhead of tuple space can be avoided because
the tuples will be removed automatically when they expire. Secondly, the design
of precondition and postprocessing tuples considers both the control flow and
data dependencies of the personal composite services. In particular, when the
execution of a task is completed, only the output parameters whose values are
needed by other entities (e.g., the user or other tasks of the composite services)
are dispatched.

Context Awareness Tuples. There are two major pieces of context infor-
mation relevant for the execution of personal composite services: current time
and user’s current location. It is assumed that the current time is known by
all the entities participating in execution (i.e., derived from their system clock).
The user’s location, on the other hand, is only known and maintained by the
user agent: a component whose role is to facilitate the orchestration of per-
sonal composite services on behalf of mobile users. In order to achieve context
awareness, and in particular, to take into account the above two pieces of con-
text information, control tuples encoding context awareness rules are placed
in the user agent’s tuple space at the beginning and during the composite
service execution. For example, the following control tuple can be placed in
the user agent’s tuple space to capture the fact that when the user agent de-
tects that the user enters a given location, this location needs to be commu-
nicated to the services participating in a personal composite service execution:
entered(newL)[true]informNewLocation(newL, SC), where newL is the
new location of the mobile user and SC is the set of involved Web services.

Exception Handling Tuples. There are numerous situations that could pre-
vent a smooth execution of a personal composite service. Indeed, obstacles are
multiple, ranging from the dynamic nature of the Web to the reduced capa-
bilities of mobile devices. To support adaptive execution of personal composite
services over the Internet, services should be pro-active: they should be capable
of adapting themselves in reaction to run-time exceptions.

We distinguish two levels of exceptions: user level and service level. The user
level exceptions are due to the characteristics of mobile devices (e.g., display size)
or changes of the personal composite services launched by users. A mobile device
can be disconnected due to discharged battery, alignment of antennas, or lack
of coverage area. As a result, service results can not be delivered to the user.
Further, a service result may not be able to be displayed on a mobile device
because of lack of appropriate facilities (e.g., device cannot display graphics).
Other exceptions at the user level are changes of personal composite services.
For example, Andrew may want to change his preferences on a specific task
(e.g., spatial constraint of QB, QV, and QP) because the lecture room is rescheduled
(e.g., the lecture will be held at Quad01C instead of Quad01A).

During a service execution, different exceptions can occur. In particular, the
selected Web service that executes a task of a personal composite service may
become unavailable because it is overloaded or its respective server is down. The
QoS parameters6 of a service may be changed (e.g., the service provider increased
the execution price). For a specific task of a personal composite service, some
new Web services with better QoS may become available.

An exception handling tuple acts as an instruction to execute actions if spe-
cific exception events occur and specific conditions hold. Exception events are
generated in response to changes of service execution states. Examples of such
events are: mobile device disconnection, services failure, and violation of QoS
constraints. The following is an example of exception handling tuples:

– arrived(a)∧unpresentable(r,d)[true]transform(r,TS,d), where TS is
a transformation service and a is the user agent. Note that the description of
transformation services is outside the scope of this paper for space reasons.
This rule, specified by the user, indicates that if the result r of a service
can not be displayed in the user’s current device d, the result will be sent to
service TS for adaptation before being forwarded to d.

3.3 Control Tuples Generation

The creation of control tuples of a personal composite service occurs at various
stages. First, the process template designer defines control tuples at design time
to capture failure handling policies (see Section 3.2) and other behavior which
cannot be personalized by the user. The tuples created in this way are injected
into the control tuple spaces of the relevant entities (e.g., component services, ser-
vice communities) before the process template is made available to users. Later,
when a process template is personalized and the resulting personal composite
service is executed, the user agent automatically generates and injects control tu-
ples (i.e., precondition and postprocessing tuples) from the preferences specified
by the user and the information encoded in the process template. Finally, once
the personalized service is being executed, the user agent keeps adding tuples
into the tuple spaces of the participating services, according to the information
that it receives from the user, and the tuples (e.g., context awareness tuples)
that exist in its own tuple space (a user agent has its own tuple space).

The generation of precondition and postprocessing tuples of each task of a
personal composite service is complex and challenging because the information
encoded in the statechart (e.g., control flow and data dependencies) of the per-
sonal composite service needs to be extracted and analyzed. In what follows,
we therefore describe the algorithms for the generation of postprocessing and
precondition tuples.

The algorithm for generating postprocessing tuples (namely PostProc) for a
task takes as input a task t, and produces a set of postprocessing tuples. The
algorithm analyses the data dependencies of the output parameters (OD) and

6 Detailed description of QoS parameters can be found in [8].

the outgoing transitions of t (TR). From OD, a set of actions is created indicating
which outputs should be delivered to which receivers. The postprocessing set of
t is the union of the postprocessing tuples associated to TR.

The postprocessing tuples for each outgoing transition of a task are generated
by a function named PostProcT, which takes as input a transition tr, and returns
a set of postprocessing tuples including the postprocessing actions associated
with this transition. Various cases exist. When tr leads to a basic state (say t′),
the tuple completed(source(tr))[c]notify(t′) is created, meaning that after
the execution of the task is completed, if the condition c is true, a notification
must be sent to t′. If tr points to a compound state, one postprocessing tuple is
generated for each initial transition of this compound state. Finally, if tr points to
a final state of a compound state, the outgoing transitions of this compound state
are considered in turn, and one or several postprocessing tuples are produced
for each of them.

Similarly, the algorithm for generating precondition tuples of a task (namely
PreCond) relies on the personalized attributes of the task (e.g., temporal and
spatial constraints, input parameters), and control flows associated with the
task. The task’s incoming transitions are analyzed and the precondition is gen-
erated for each incoming transition of the task. For space reasons, we omit the
description of the algorithm.

4 Implementing PCAP

In this section, we overview the status of the PCAP prototype implementation.
The prototype architecture (see Figure 2) consists of a user agent, a process
manager, and a pool of services, all implemented in Java. Below, we describe the
implementation of the process definition environment (also called the process
manager) for specifying and managing process templates, and a set of pre-built
classes that act as a middleware for enabling the self-orchestration of personal
composite services.

4.1 Process Definition Environment

The process definition environment consists of a set of integrated tools that al-
low template providers to create process templates: templates/service discovery
engine and process template builder. The process template builder assists tem-
plate providers in defining the new templates and editing the existing ones. A
template definition is edited through a visual interface. The template builder
offers an editor for describing a statechart diagram of a process template (an
extension of our previous work in [14]).

The template/service discovery engine facilitates the advertisement and loca-
tion of processes and services. In the implementation, the Universal Description,
Discovery and Integration (UDDI) is used as process/service template repository.
Web service providers can also register their services to the discovery engine. The
Web Service Description Language (WSDL) is used to specify Web services.

UDDI registry

Services

Communities

C1 C2 C3

S1 S2 S3

is member
 of

Process manager

Process Template
Builder

Template/service Discovery
Engine

Service/process
template provider

service/ template
advertisements

template discovery

interacts interacts

Legend

tuple space

User agent

Personal Process
Customizer

Personal Service
Execution Engine

Internet

service/ template
discovery

End user

wireless connection

Execution controller

Event source monitor

Event manager

inject tuples
to

Fig. 2. Architecture of PCAP prototype

4.2 Pre-built Classes

For any user (resp., service) wishing to participate in our platform, the user
(resp., the administrator of the service) needs to download and install a set
of pre-built class, namely the user agent (resp., the task controller), the event
manager, and the event source monitor.

User Agent. User agents are used for specifying and executing personal com-
posite services. A user agent consists of a personal process customizer, and an
execution engine. The process customizer generates personal services for users
by customizing process templates based on user preferences. It provides an in-
terface for the mobile user, implemented using Pocket PC Emulator. Currently,
kXML 2 (http://kxml.enhydra.org), an open source designed to run in an
MIDP (Mobile Information Device Profile) environment (e.g., PalmOS), is used
to parse XML documents on mobile devices. The personalized service is then
translated into an XML document for subsequent analysis and processing by
the execution engine. The user agent maintains the user profile. An interface is
also provided for the mobile user to create and modify her profile information.

The execution engine provides a method called deploy() that is responsible
for generating control tuples of each task of a personal composite service, using

the approach presented in Section 3. The control tuples are then uploaded into
the tuple spaces of the corresponding selected Web services, as well as into the
tuple space of the user agent (not shown in the architecture).

Task Controller. The functionalities of a task controller are realized by a pre-
built Java class, called Controller. This class provides services with capabilities
to participate in service management including exception handling. It provides a
method called coordinate() for receiving messages, managing service instances
(i.e., creating and deleting instances), registering events to the event manager,
triggering actions, tracing service invocations, and communicating with other
controllers. There is one controller class per service. The controller relies on the
control tuple space of the associated service to manage service activities. Each
tuple space is represented using a local XML repository. Controllers monitor and
control service activities by creating and reading tuples of their associated space
as well as injecting (uploading) tuples in spaces associated to their peers.

Event Manager and Event Source Monitor. The event manager and the
event source monitor are attached to a service or the user agent. The event
source monitor detects the modifications of the event sources. For example,
the event source of the event entered is the mobile user’s current location.
The event manager fires and distributes the events. These two components
are mapped into classes called eventManager and eventSourceMonitor re-
spectively. The eventManager provides methods for receiving messages, includ-
ing subscribing messages from controllers and event source information from
eventSourceMonitor, and notifying the fired events to the subscribed con-
trollers. In particular, the class eventManager implements a process that runs
continuously, listening to incoming messages. The messages are either subscribe
or monitor. The former are the messages for subscribing to events, while the lat-
ter are the messages notifying the detected event source information. When the
eventManager receives a message, it first examines the identifier of the message
and proceeds as follows: i) if it is a subscribing message, extracts the controller
and the subscribed event, then add the controller to the array of the event, which
maintains all the subscribers of this event, ii) if it is a monitor message, extract
the event source information and fire the corresponding event.

5 Conclusion

In this paper, we have presented the design and implementation of PCAP, a
framework of enabling personalized composition and adaptive provisioning of
Web services. While much of the work on Web services has focused on low-level
standards for publishing, discovering, and provisioning Web services in wired
environments and for the benefit of stationary users, we deemed appropriate
to put forward novel solutions and alternatives for the benefit of mobile users.
Main contributions of PCAP include: i) personalized composition of Web ser-
vices by considering users’ preferences (e.g., temporal and spatial constraints),
ii) distributed execution of personal composite services that is coordinated by
tuple space based orchestration model, and iii) run-time exceptions handling.

So far, we have implemented a prototype that realizes the specification and
execution of personal composite services. This implementation effort has served
to validate the viability of the proposed approach. Ongoing work includes assess-
ing the performance and scalability of PCAP. Another direction for future work
is to add more flexibility to PCAP (beyond its exception handling capability) by
supporting runtime modifications to the schema of a personal composite service
(e.g., removing a task).

References

1. Chen, Y., Petrie, C.: Ubiquitous Mobile Computing. IEEE Internet Computing 7

(2003) 16–17
2. Mascolo, C., Capra, L., Emmerich, W.: Mobile Computing Middleware (A Survey).

In: Advanced Lectures on Networking (NETWORKING 2002), Pisa, Italy (2002)
3. Burcea, I., Jacobsen, H.A.: L-ToPSS-Push-oriented Location Based Services. In:

Proc. of the 4th VLDB Workshop on Technologies for E-Services (VLDB-TES03),
Berlin, Germany (2003)

4. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Trans-
actions on Software Engineering and Methodology 5 (1996) 293–333

5. Benatallah, B., Sheng, Q.Z., Dumas, M.: The Self-Serv Environment for Web
Services Composition. IEEE Internet Computing 7 (2003) 40–48

6. Giaglis, G., Kourouthanasis, P., Tsamakos, A.: Towards a Classification Network
for Mobile Location Services. In Mennecke, B., Strader, T., eds.: Mobile Commerce:
Technology, Theory, and Applications. Idea Group Publishing (2002)

7. Maamar, Z., Sheng, Q.Z., Benatallah, B.: On Composite Web Services Provision-
ing in an Environment of Fixed and Mobile Computing Resources. Information
Technology and Management Journal, Special Issue on Workflow and e-Business,
Kluwer Academic Publishers (forthcoming) 5 (2004)

8. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality Driven
Web Services Composition. In: Proc. of the 12th International World Wide Web
Conference (WWW’03), Budapest, Hungary (2003)

9. Roman, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt,
K.: A Middleware Infrastructure for Active Spaces. IEEE Pervasive Computing 1

(2002) 74–83
10. Griswold, W.G., Boyer, R., Brown, S.W., Truong, T.: A Component Architecture

for an Extensible, Highly Integrated Context-Aware Computing Infrastructure.
In: Proc. of the 25th International Conference on Software Engineering, Oregon,
Portland (2003)

11. Schuster, H., Georgakopoulos, D., Cichocki, A., Baker, D.: Modeling and com-
posing service-based and reference process-based multi-enterprise processes. In:
Proc. of the 12th Int. Conference on Advanced Information Systems Engineering
(CAiSE’00), Stockholm, Sweden, Springer Verlag (2000)

12. Casati, F., Shan, M.C.: Dynamic and adaptive composition of e-services. Infor-
mation Systems 26 (2001) 143–162

13. Ahuja, S., Carriero, N., Gelernter, D.: Linda and Friends. Computer 19 (1986)
26–34

14. Sheng, Q.Z., Benatallah, B., Dumas, M., Mak, E.: SELF-SERV: A Platform for
Rapid Composition of Web Services in a Peer-to-Peer Environment. In: Proc. of
the 28th Very Large DataBase Conference (VLDB’02), Hong Kong, China (2002)

