3,127 research outputs found

    Dark Matter searches using gravitational wave bar detectors: quark nuggets and newtorites

    Get PDF
    Many experiments have searched for supersymmetric WIMP dark matter, with null results. This may suggest to look for more exotic possibilities, for example compact ultra-dense quark nuggets, widely discussed in literature with several different names. Nuclearites are an example of candidate compact objects with atomic size cross section. After a short discussion on nuclearites, the result of a nuclearite search with the gravitational wave bar detectors Nautilus and Explorer is reported. The geometrical acceptance of the bar detectors is 19.5 m2\rm m^2 sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. The experimental limits we obtain are of interest because, for nuclearites of mass less than 10−510^{-5} g, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates. Particles with gravitational only interactions (newtorites) are another example. In this case the sensitivity is quite poor and a short discussion is reported on possible improvements.Comment: published on Astroparticle Physics Sept 25th 2016 replaced fig 1

    Stroke in Patients with Schistosomiasis: Review of Cases in Literature

    Get PDF
    Introduction. Cerebral vascular comorbidities may occur in patients with schistosomiasis, as described in case reports. Aim and Methods. We have summarized general clinical and neurological features in patients with stroke associated with schistosomiasis, through a review of case reports in the literature. Investigation Outcomes. A total of eight case reports were retrieved. The mean age of patients was 36.42 +/- 16.7 (19 to 56 years), four females, three males, and one anonymous sex. Eosinophilia was the most frequent feature at presentation, followed by cardiac abnormalities, confusion, fever, ataxia, hemiplegia, headache, urticaria, dysphasia, and memory impairment. Patients usually present with watershed infarction or intracranial vasculitis. In one case, extracranial carotid arteries presented with inflammation and stenosis. The patient's serology was positive on admission in five cases. Full neurological recovery was reported in three cases, and partial improvement in another three. In two cases, information on neurological outcomes was incomplete. Stroke in schistosomiasis can be caused by haemodynamic impairment, direct lesion to the arterial wall, vasa vasorum obliterative endarteritis, contiguity with a focus of inflamed tissue, or inflammatory intimal damage. Schistosomiasis needs to be included in the differential diagnosis of stroke in people living or coming back from endemic areas. Conclusions. Further studies addressing the noncommunicable comorbidity issues related to this condition are needed

    Sensitivity of the spherical gravitational wave detector MiniGRAIL operating at 5 K

    Get PDF
    We present the performances and the strain sensitivity of the first spherical gravitational wave detector equipped with a capacitive transducer and read out by a low noise two-stage SQUID amplifier and operated at a temperature of 5 K. We characterized the detector performance in terms of thermal and electrical noise in the system output sygnal. We measured a peak strain sensitivity of 1.5⋅10−20Hz−1/21.5\cdot 10^{-20} Hz^{-1/2} at 2942.9 Hz. A strain sensitivity of better than 5⋅10−20Hz−1/25\cdot 10{-20}Hz{-1/2} has been obtained over a bandwidth of 30 Hz. We expect an improvement of more than one order of magnitude when the detector will operate at 50 mK. Our results represent the first step towards the development of an ultracryogenic omnidirectional detector sensitive to gravitational radiation in the 3kHz range.Comment: 8 pages, 5 figures, submitted to Physical Review

    Density correlations in ultracold atomic Fermi gases

    Get PDF
    We investigate density fluctuations in a coherent ensemble of interacting fermionic atoms. Adapting the concept of full counting statistics, well-known from quantum optics and mesoscopic electron transport, we study second-order as well as higher-order correlators of density fluctuations. Using the mean-field BCS state to describe the whole interval between the BCS limit and the BEC limit, we obtain an exact expression for the cumulant-generating function of the density fluctuations of an atomic cloud. In the two-dimensional case, we obtain a closed analytical expression. Poissonian fluctuations of a molecular condensate on the BEC side are strongly suppressed on the BCS side. The size of the fluctuations in the BCS limit is a direct measure of the pairing potential. We also discuss the BEC-BCS crossover of the third cumulant and the temperature dependence of the second cumulant.Comment: 4 pages, 4 figures. To appear in Phys. Rev. A. New calculation of the bin statistics of a free Bose gas; updated and extended bibliograph

    Ropinirole, a dopamine agonist with high D3 affinity, reduces proactive inhibition: A double-blind, placebo-controlled study in healthy adults

    Get PDF
    Response inhibition describes the cognitive processes mediating the suppression of unwanted actions. A network involving the basal ganglia mediates two forms of response inhibition: reactive and proactive inhibition. Reactive inhibition serves to abruptly stop motor activity, whereas proactive inhibition is goal-orientated and results in slowing of motor activity in anticipation of stopping. Due to its impairment in several psychiatric disorders, the neurochemistry of response inhibition has become of recent interest. Dopamine has been posed as a candidate mediator of response inhibition due to its role in functioning of the basal ganglia and the observation that patients with Parkinson's disease on dopamine agonists develop impulse control disorders. Although the effects of dopamine on reactive inhibition have been studied, substantial literature on the role of dopamine on proactive inhibition is lacking. To fill this gap, we devised a double-blind, placebo-controlled study of 1 mg ropinirole (a dopamine agonist) on response inhibition in healthy volunteers. We found that whilst reactive inhibition was unchanged, proactive inhibition was impaired when participants were on ropinirole relative to when on placebo. To investigate how ropinirole mediated this effect on proactive inhibition, we used hierarchical drift-diffusion modelling. We found that ropinirole impaired the ability to raise the decision threshold when proactive inhibition was called upon. Our results provide novel evidence that an acute dose of ropinirole selectively reduces proactive inhibition in healthy participants. These results may help explain how ropinirole induces impulse control disorders in susceptible patients with Parkinson's disease

    Ropinirole, a dopamine agonist with high D3 affinity, reduces proactive inhibition: A double-blind, placebo-controlled study in healthy adults

    Get PDF
    Response inhibition describes the cognitive processes mediating the suppression of unwanted actions. A network involving the basal ganglia mediates two forms of response inhibition: reactive and proactive inhibition. Reactive inhibition serves to abruptly stop motor activity, whereas proactive inhibition is goal-orientated and results in slowing of motor activity in anticipation of stopping. Due to its impairment in several psychiatric disorders, the neurochemistry of response inhibition has become of recent interest. Dopamine has been posed as a candidate mediator of response inhibition due to its role in functioning of the basal ganglia and the observation that patients with Parkinson's disease on dopamine agonists develop impulse control disorders. Although the effects of dopamine on reactive inhibition have been studied, substantial literature on the role of dopamine on proactive inhibition is lacking. To fill this gap, we devised a double-blind, placebo-controlled study of 1 mg ropinirole (a dopamine agonist) on response inhibition in healthy volunteers. We found that whilst reactive inhibition was unchanged, proactive inhibition was impaired when participants were on ropinirole relative to when on placebo. To investigate how ropinirole mediated this effect on proactive inhibition, we used hierarchical drift-diffusion modelling. We found that ropinirole impaired the ability to raise the decision threshold when proactive inhibition was called upon. Our results provide novel evidence that an acute dose of ropinirole selectively reduces proactive inhibition in healthy participants. These results may help explain how ropinirole induces impulse control disorders in susceptible patients with Parkinson's disease

    On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases

    Get PDF
    Neurodegenerative diseases are a collection of disorders that result in the progressive degeneration and death of neurons. They are clinically heterogenous and can present as deficits in movement, cognition, executive function, memory, visuospatial awareness and language. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation tool that allows for the assessment of cortical function in vivo. We review how TMS has been used for the investigation of three neurodegenerative diseases that differ in their neuroanatomical axes: (1) Motor cortex—corticospinal tract (motor neuron diseases), (2) Non-motor cortical areas (dementias), and (3) Subcortical structures (parkinsonisms). We also make four recommendations that we hope will benefit the use of TMS in neurodegenerative diseases. Firstly, TMS has traditionally been limited by the lack of an objective output and so has been confined to stimulation of the motor cortex; this limitation can be overcome by the use of concurrent neuroimaging methods such as EEG. Given that neurodegenerative diseases progress over time, TMS measures should aim to track longitudinal changes, especially when the aim of the study is to look at disease progression and symptomatology. The lack of gold-standard diagnostic confirmation undermines the validity of findings in clinical populations. Consequently, diagnostic certainty should be maximized through a variety of methods including multiple, independent clinical assessments, imaging and fluids biomarkers, and post-mortem pathological confirmation where possible. There is great interest in understanding the mechanisms by which symptoms arise in neurodegenerative disorders. However, TMS assessments in patients are usually carried out during resting conditions, when the brain network engaged during these symptoms is not expressed. Rather, a context-appropriate form of TMS would be more suitable in probing the physiology driving clinical symptoms. In all, we hope that the recommendations made here will help to further understand the pathophysiology of neurodegenerative diseases

    Quark nuggets search using 2350 Kg gravitational waves aluminum bar detectors

    Get PDF
    The gravitational wave resonant detectors can be used as detectors of quark nuggets, like nuclearites (nuclear matter with a strange quark). This search has been carried out using data from two 2350 Kg, 2 K cooled, aluminum bar detectors: NAUTILUS, located in Frascati (Italy), and EXPLORER, that was located in CERN Geneva (CH). Both antennas are equipped with cosmic ray shower detectors: signals in the bar due to showers are continuously detected and used to characterize the antenna performances. The bar excitation mechanism is based on the so called thermo-acoustic effect, studied on dedicated experiments that use particle beams. This mechanism predicts that vibrations of bars are induced by the heat deposited in the bar from the particle. The geometrical acceptance of the bar detectors is 19.5 m2\rm m^2 sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. We will show the results of ten years of data from NAUTILUS (2003-2012) and 7 years from EXPLORER (2003-2009). The experimental limits we obtain are of interest because, for nuclearites of mass less than 10−410^{-4} grams, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates.Comment: presented to the 33rd International Cosmic Ray Conference Rio de Janeiro 201

    Fracture toughness measurements on igneous rocks using a high-pressure, high-temperature rock fracture mechanics cell

    Get PDF
    A sound knowledge of mechanical properties of rocks at high temperatures and pressures is essential for modelling volcanological problems such as fracture of lava flows and dike emplacement. In particular, fracture toughness is a scale-invariant material property of a rock that describes its resistance to tensile failure. A new fracture mechanics apparatus has been constructed enabling fracture toughness measurements on large (60 mm diameter) rock core samples at temperatures up to 750–C and pressures up to 50 MPa. We present a full description of this apparatus and, by plotting fracture resistance as a function of crack length, show that the size of the samples is sufficient for reliable fracture toughness measurements. A series of tests on Icelandic, Vesuvian and Etnean basalts at temperatures from 30 to 600–C and confining pressures up to 30 MPa gave fracture toughness values between 1.4 and 3.8 MPa m1=2. The Icelandic basalt is the strongest material and the Etnean material sampled from the surface crust of a lava flow the weakest. Increasing temperature does not greatly affect the fracture toughness of the Etnean or Vesuvian material but the Icelandic samples showed a marked increase in toughness at around 150–C, followed by a return to ambient toughness levels. This material also became tougher under moderate confining pressure but the other two materials showed little change in toughness. We describe in terms of fracture mechanics probable causes for the changes in fracture toughness and compare our experimental results with values obtained from dike propagation modelling found in the literature

    Analysis of 3 years of data from the gravitational wave detectors EXPLORER and NAUTILUS

    Full text link
    We performed a search for short gravitational wave bursts using about 3 years of data of the resonant bar detectors Nautilus and Explorer. Two types of analysis were performed: a search for coincidences with a low background of accidentals (0.1 over the entire period), and the calculation of upper limits on the rate of gravitational wave bursts. Here we give a detailed account of the methodology and we report the results: a null search for coincident events and an upper limit that improves over all previous limits from resonant antennas, and is competitive, in the range h_rss ~1E-19, with limits from interferometric detectors. Some new methodological features are introduced that have proven successful in the upper limits evaluation.Comment: 12 pages, 12 figure
    • …
    corecore