77 research outputs found
Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms.
Diatom biofilms are abundant in the marine environment. It is assumed (but untested) that extracellular polymeric substances (EPS), produced by diatoms, enable cells to cope with fluctuating salinity. To determine the protective role of EPS, Cylindrotheca closterium was grown in xanthan gum at salinities of 35, 50, 70 and 90 ppt. A xanthan matrix significantly increased cell viability (determined by SYTOX-Green), growth rate and population density by up to 300, 2,300 and 200%, respectively. Diatoms grown in 0.75% w/v xanthan, subjected to acute salinity shock treatments (at salinities 17.5, 50, 70 and 90 ppt) maintained photosynthetic capacity, Fq'/Fm', within 4% of pre-shock values, whereas Fq'/Fm' in cells grown without xanthan declined by up to 64% with hypersaline shock. Biofilms that developed in xanthan at standard salinity helped cells to maintain function during salinity shock. These results provide evidence of the benefits of living in an EPS matrix for biofilm diatoms
Gene Expression Analysis of Forskolin Treated Basilar Papillae Identifies MicroRNA181a as a Mediator of Proliferation
Auditory hair cells spontaneously regenerate following injury in birds but not mammals. A better understanding of the molecular events underlying hair cell regeneration in birds may allow for identification and eventually manipulation of relevant pathways in mammals to stimulate regeneration and restore hearing in deaf patients.Gene expression was profiled in forskolin treated (i.e., proliferating) and quiescent control auditory epithelia of post-hatch chicks using an Affymetrix whole-genome chicken array after 24 (n = 6), 48 (n = 6), and 72 (n = 12) hours in culture. In the forskolin-treated epithelia there was significant (p<0.05; >two-fold change) upregulation of many genes thought to be relevant to cell cycle control and inner ear development. Gene set enrichment analysis was performed on the data and identified myriad microRNAs that are likely to be upregulated in the regenerating tissue, including microRNA181a (miR181a), which is known to mediate proliferation in other systems. Functional experiments showed that miR181a overexpression is sufficient to stimulate proliferation within the basilar papilla, as assayed by BrdU incorporation. Further, some of the newly produced cells express the early hair cell marker myosin VI, suggesting that miR181a transfection can result in the production of new hair cells.These studies have identified a single microRNA, miR181a, that can cause proliferation in the chicken auditory epithelium with production of new hair cells
Advances in exosome therapies in ophthalmology–From bench to clinical trial
During the last decade, the fields of advanced and personalized therapeutics have been constantly evolving, utilizing novel techniques such as gene editing and RNA therapeutic approaches. However, the method of delivery and tissue specificity remain the main hurdles of these approaches. Exosomes are natural carriers of functional small RNAs and proteins, representing an area of increasing interest in the field of drug delivery. It has been demonstrated that the exosome cargo, especially miRNAs, is at least partially responsible for the therapeutic effects of exosomes. Exosomes deliver their luminal content to the recipient cells and can be used as vesicles for the therapeutic delivery of RNAs and proteins. Synthetic therapeutic drugs can also be encapsulated into exosomes as they have a hydrophilic core, which makes them suitable to carry water-soluble drugs. In addition, engineered exosomes can display a variety of surface molecules, such as peptides, to target specific cells in tissues. The exosome properties present an added advantage to the targeted delivery of therapeutics, leading to increased efficacy and minimizing the adverse side effects. Furthermore, exosomes are natural nanoparticles found in all cell types and as a result, they do not elicit an immune response when administered. Exosomes have also demonstrated decreased long-term accumulation in tissues and organs and thus carry a low risk of systemic toxicity. This review aims to discuss all the advances in exosome therapies in ophthalmology and to give insight into the challenges that would need to be overcome before exosome therapies can be translated into clinical practice
Large Scale Gene Expression Profiles of Regenerating Inner Ear Sensory Epithelia
Loss of inner ear sensory hair cells (HC) is a leading cause of human hearing loss and balance disorders. Unlike mammals, many lower vertebrates can regenerate these cells. We used cross-species microarrays to examine this process in the avian inner ear. Specifically, changes in expression of over 1700 transcription factor (TF) genes were investigated in hair cells of auditory and vestibular organs following treatment with two different damaging agents and regeneration in vitro. Multiple components of seven distinct known signaling pathways were clearly identifiable: TGFβ, PAX, NOTCH, WNT, NFKappaB, INSULIN/IGF1 and AP1. Numerous components of apoptotic and cell cycle control pathways were differentially expressed, including p27KIP and TFs that regulate its expression. A comparison of expression trends across tissues and treatments revealed identical patterns of expression that occurred at identical times during regenerative proliferation. Network analysis of the patterns of gene expression in this large dataset also revealed the additional presence of many components (and possible network interactions) of estrogen receptor signaling, circadian rhythm genes and parts of the polycomb complex (among others). Equal numbers of differentially expressed genes were identified that have not yet been placed into any known pathway. Specific time points and tissues also exhibited interesting differences: For example, 45 zinc finger genes were specifically up-regulated at later stages of cochlear regeneration. These results are the first of their kind and should provide the starting point for more detailed investigations of the role of these many pathways in HC recovery, and for a description of their possible interactions
Ensemble coding of color and luminance contrast
Ensemble coding has been demonstrated for many attributes including color, but the metrics on which this coding is based remain uncertain. We examined ensemble percepts for stimulus sets that varied in chromatic contrast between complementary hues, or that varied in luminance contrast between increments and decrements, in both cases focusing on the ensemble percepts for the neutral gray stimulus defining the category boundary. Each ensemble was composed of 16 circles with four contrast levels. Observers saw the display for 0.5 s and then judged whether a target contrast was a member of the set. False alarms were high for intermediate contrasts (within the range of the ensemble) and fell for higher or lower values. However, for ensembles with complementary hues, gray was less likely to be reported as a member, even when it represented the mean chromaticity of the set. When the settings were repeated for luminance contrast, false alarms for gray were higher and fell off more gradually for out-of-range contrasts. This difference implies that opposite luminance polarities represent a more continuous perceptual dimension than opponent-color variations, and that “gray” is a stronger category boundary for chromatic than luminance contrasts. For color, our results suggest that ensemble percepts reflect pooling within rather than between large hue differences, perhaps because the visual system represents hue differences more like qualitatively different categories than like quantitative differences within an underlying color “space.” The differences for luminance and color suggest more generally that ensemble coding for different visual attributes might depend on different processes that in turn depend on the format of the visual representation
Intra annual seed production and availability of two morphotypes of Brosimum rubescens taubert in forests of the Colombian Amazon
We assessed the reproductive phenology, production, and availability of seeds for two morphotypes of Brosimum rubescens Taub. (Moraceae), locally known as black palosangre (BP) and white palosangre (WP) during an annual cycle in a 20-ha mega plot located in a primary forest at the El Zafire Biological Station, in the Colombian Amazon. We found that 87% and 41% of potentially reproductive individuals of BP and WP respectively, was fertile and the production of reproductive structures was variable within and between morphotypes. The phenological pattern was seasonal in both morphotypes, characterized by flowering at the end of the dry season and fruiting at the start of the rainy season. BP produced and aborted large amounts of infructescences (approximately 21743), possibly as a response to satiate predators. Relative predation in terms of pre-dispersion of seeds was similar in both morphotypes, with a greater damage generated by a Scolytidae Curculionidae (Coleoptera) and to a lesser degree by frugivorous vertebrates. The number of mature fruits, total seeds, and removed seeds was similar for both morphotypes. Differences in the amount of reproductive structures and in the timing of phenophases between morphotypes decreased the competition and contributed to their coexistence. It seems that in undisturbed forests seed limitation could be more conditioning for WP, while other limitations after fruit and seed production could occur in BP
Effects of 1.25-Dihydroxycholecalciferol and Hydroalcoholic Extract of Withania Coagulans Fruit on Bone Mineralization and Mechanical and Histological Properties of Male Broiler Chickens
Mobility power flows of thin circular plate carrying concentrated masses based on structural circumferential periodicity
Tyrosine Hydroxylase Induction by Basic Fibroblast Growth Factor and Cyclic AMP Analogs in Striatal Neural Stem Cells: Role of ERK1/ERK2 Mitogen-activated Protein Kinase and Protein Kinase C
- …
