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Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms

Deborah J. Steelea,b,c*, Daniel J. Franklinb and Graham J.C. Underwooda

aSchool of Biological Sciences, University of Essex, Colchester, UK; bFaculty of Science & Technology, Bournemouth University,
Poole, UK; cPlymouth Marine Laboratory, Plymouth, UK

(Received 5 May 2014; accepted 28 August 2014)

Diatom biofilms are abundant in the marine environment. It is assumed (but untested) that extracellular polymeric sub-
stances (EPS), produced by diatoms, enable cells to cope with fluctuating salinity. To determine the protective role of
EPS, Cylindrotheca closterium was grown in xanthan gum at salinities of 35, 50, 70 and 90 ppt. A xanthan matrix sig-
nificantly increased cell viability (determined by SYTOX-Green), growth rate and population density by up to 300,
2,300 and 200%, respectively. Diatoms grown in 0.75% w/v xanthan, subjected to acute salinity shock treatments (at
salinities 17.5, 50, 70 and 90 ppt) maintained photosynthetic capacity, Fq′/Fm′, within 4% of pre-shock values, whereas
Fq′/Fm′ in cells grown without xanthan declined by up to 64% with hypersaline shock. Biofilms that developed in xan-
than at standard salinity helped cells to maintain function during salinity shock. These results provide evidence of the
benefits of living in an EPS matrix for biofilm diatoms.
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Introduction

Microbial photosynthetic biofilms consist of prokaryotic
and eukaryotic phototrophs embedded in a matrix of
extracellular polymeric substances (EPS). Biofilms occur
widely in almost all terrestrial and aquatic environments
and provide important ecosystem functions, including
sediment stabilisation (Paterson 1997; Lan et al. 2014),
primary production (Underwood & Kromkamp 1999)
and nutrient cycling (Nedwell et al. 1999), but also cause
fouling on artificial maritime surfaces (eg Molino &
Wetherbee 2008; Mieszkin et al. 2013). In many envi-
ronments, such as intertidal sediment flats (Rothrock &
Garcia-Pichel 2005; McKew et al. 2011), sea ice (Gleitz
& Thomas 1993; Krembs et al. 2011), ships’ hulls, soil
and desert biocrusts (Lan et al. 2014), salt marshes
(Underwood 1997) and glacial surfaces (Yallop et al.
2012), biofilms are exposed to fluctuating (and in some
cases, extreme) conditions of water availability and salin-
ity (Gleitz & Thomas 1993; Underwood 1997; McKew
et al. 2011). It has long been speculated that the ubiquity
of EPS in biofilms is partly due to microorganisms modi-
fying their immediate surroundings to reduce the nega-
tive impacts of water stress by changing the production
and composition of their EPS (Decho 1990; Krembs &
Deming 2008). This microscale environmental buffering
by microbes has macroscale consequences (Decho 1994)
as it allows the physical development and succession of
primary producer assemblages in harsh environments, for
example in large scale stabilisation of desert soils by

cyanobacterial filaments and EPS (Lan et al. 2014), bio-
stabilisation of marine sediment habitats (Yallop et al.
2000), and in the structure and organic carbon composi-
tion of polar sea ice (Krembs et al. 2011; Underwood
et al. 2013).

Low or fluctuating water potentials are known to
stimulate the production of EPS by bacteria (Dudman
1977; Roberson & Firestone 1992); the EPS provides a
beneficial, hydrated microenvironment around the cell
(Tonn & Gander 1979; Roberson & Firestone 1992;
Chang & Halverson 2003). However, this process has
received much less attention in microalgae. As microal-
gae, and in particular diatoms, produce EPS, an equiva-
lence between the function of bacterial and microalgal
EPS has long been suspected (Hostetter & Hoshaw
1970; Davis 1972).

Benthic diatoms associated with sea ice and intertidal
sediment are well adapted to fluctuating conditions and
can tolerate a wide range of salinities (Gleitz & Thomas
1993; Clavero et al. 2000; Krell et al. 2008). Some of
these diatom species, eg Cylindrotheca closterium
(Zargiel et al. 2011), are also known to adhere to artifi-
cial surfaces and cause biofouling. Diatoms can reduce
the effects of salt stress by the active transport of ions
out of the cell or into the vacuole (Shi et al. 2002) and
by the regulation of cellular osmolytes (Clavero et al.
2000). However, these mechanisms are energetically
expensive and can therefore halt or slow cell division
(Krell et al. 2007). Hence, an EPS-based mechanism that
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buffers the effects of fluctuating water potential may pro-
vide a competitive advantage to diatoms, as it does for
bacteria. For example, the benthic diatom Phaeodactylum
tricornutum increases production of EPS and produces a
higher proportion of uronic acids and sulphates at ele-
vated salinities (Abdullahi et al. 2006), potentially allow-
ing the EPS to retain more water. Nitzschia frustulum
produces more rhamnose and xylose sugars under ele-
vated salinity, causing the EPS gel to become thicker
(Allan et al. 1972), which restricts the diffusion of
anions towards the cell. The sea-ice diatom Fragilariop-
sis cylindrus increases EPS production at reduced tem-
peratures and elevated salinity. The EPS inhibits ice
formation and therefore acts as a cryoprotectant (Aslam
et al. 2012). Although these adaptations support the con-
cept that living within an EPS matrix is beneficial, there
have been few, if any, direct tests of this hypothesis.

To further understand EPS protection of diatoms, a
model system was used that allowed broad conclusions
to be reached that are applicable to natural biofilms,
which vary substantially in terms of species composition
and microstructure. Cylindrotheca is a common maritime
fouling genus and the species C. closterium has been
reported in previous biofouling studies (Zargiel et al.
2011; Zargiel & Swain 2014). C. closterium is com-
monly used as a model species for studies of EPS (Staats
et al. 1999; de Brouwer & Stal 2002) and previously
caused a mucilage event in the Adriatic Sea (Najdek
et al. 2005). It is common in mud flats and is known to
modify its EPS production with changes in the environ-
ment (Alcoverro et al. 2000; Apoya-Horton et al. 2006).

The monosaccharide composition of diatom EPS
varies between species but generally glucose, mannose,
galactose and rhamnose are the most abundant sugars
(Hoagland et al. 1993). C. closterium EPS consists of a
highly hydrated matrix of strands with glucose and
mannose as the dominant monosaccharides, which are
acidified to uronic acids (Hoagland et al. 1993;
Apoya-Horton et al. 2006), a composition also found in
Navicula species (Bhosle et al. 1995; Staats et al. 1999).
Specifically, C. closterium EPS fractions produced under
a 12:12 h dark:light cycle contained 82.5% glucose and
7.6% mannose in the non-attached state (removed by
centrifugation) (Staats et al. 1999) and in the attached
state (extracted in 30°C water for 1 h), 22.9% glucose
and 14.7% rhamnose. The prevalence of uronic acids
was a common feature measured in the biofouling model
species Craspedostauros australis and Amphora coffeae-
formis (Poulsen et al. 2014). This common composition
of diatom EPS is similar to xanthan gum, a polysaccha-
ride gel synthesised by the bacterium Xanthomonas
campestris and widely used as a reference standard for
EPS in the marine environment (Passow & Alldredge
1995; Krembs et al. 2011) and for soil biofilms (Hart
et al. 2001). Xanthan gum consists of glucose, mannose

and glucuronic acid in the ratio 2:2:1 with terminal ends
of pyruvate, which is thought to be important in
cross-linking the xanthan molecules and so contributing
structure to the gel. Pyruvate has also been detected,
accounting for 20% of the biofilm EPS of the diatom
Amphora rostrata (Khandeparker & Bhosle 2001). How-
ever, the high proportion of uronic acids in diatom EPS
suggests that their molecular cross-linking is due to ionic
interactions between divalent cations and the carboxylic
group of the uronic acids, as occurs in bacterial biofilms
(Sutherland 2001). The similarities between xanthan gum
and C. closterium EPS make xanthan a useful tool for
studying the protective qualities of EPS to cells.

This study investigated how the presence of an EPS
matrix can influence the survival of C. closterium during
growth at standard (35 ppt) and elevated salinities and
during salinity fluctuations. For the first time experiments
were explicitly designed that directly measured the
effects of EPS on diatom cell viability and photosyn-
thetic capacity, both of which govern population growth
and persistence. The study examined whether increased
EPS concentrations enhanced population growth and
long term viability, and whether this effect was greater at
higher salinity. The study also examined whether the
presence of an EPS matrix protected cells from acute
osmotic shock over short time periods.

Materials and methods

Culture conditions

Cylindrotheca closterium (Reimann et Lewin) from the
University of Essex culture collection was grown in an
artificial seawater base (35 ppt Reefsalt, AquaWorld,
Swallow Aquatics, Southend-on-Sea, UK) enriched with
f/2 medium (Guillard 1975). Cultures were maintained at
salinity 35 ppt prior to the study and were not acclimated
to the experimental conditions. Batch cultures were
grown in a Qualicool 260 incubator (LTE Scientific Ltd,
Oldham, UK) at 20°C and 24 h light at an irradiance of
12 ± 0.5 μmol photons m−2 s−1 provided by fluorescent
lamps. Stock cultures were treated with gentamicin and
penicillin–streptomycin solution (5 μg ml−l, Sigma-
Aldrich, Dorset, UK), before experimental use, in order
to minimise bacterial growth. Aseptic techniques were
used throughout all procedures.

Long-term growth at elevated salinities

Cultures were grown in a 4 × 4 matrix of treatments:
salinities of 35, 50, 70 and 90 (ppt/unitless) and xanthan
gum (Sigma-Aldrich) at concentrations of 0, 0.04, 0.38
and 0.75% w/v. Salinity was increased from medium
salinity (35 ppt) by adding NaCl. Xanthan gum was dis-
solved overnight into the growth medium and stock cul-
ture cells were added at starting population densities of
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1.5 × 105 cells ml−1; determined by a haemacytometer
count (Neubauer, improved bright-line). For treatments at
salinities 35, 50 and 70 ppt, 12 sterile 5 ml Petri dishes
(Sigma-Aldrich) were inoculated with 4 ml of the
prepared cell culture and sealed with Parafilm (M labora-
tory film, Sigma-Aldrich) and incubated as above. For
the treatments at salinity 90 ppt, 18 replicates were inoc-
ulated to allow additional sampling in the latter part of
the study, due to the predicted suppression of growth rate
and hence elongation of the growth cycle, at high
salinity. In addition, C. closterium was maintained in the
dark (20°C, n = 3) at salinities 35, 70 and 90 ppt with 0
or 0.75% xanthan gum (w/v) and measured for popula-
tion density only, to establish whether heterotrophic
utilisation of EPS components occurred (Tuchman et al.
2006).

On the day of inoculation (day 0) and every one to
three days after, the maximum quantum efficiency of
PSII photochemistry (Fv/Fm) was measured in a sub-sam-
ple (three dishes) of each treatment. The cultures were
dark-adapted for 30 min before measurement. The
minimum (Fo) and maximum (Fm) fluorescence yields
were measured with a Xenon-PAM (pulse amplitude
modulated) fluorometer (HeinzWalz GmbH, Effeltrich,
Germany) as described by Waring et al. (2006) with
saturating light pulses (0.6 s) of ~ 4,000 μmol photons
m−2 s−1 for measurement of Fm. The ratio Fv/Fm was
calculated, where variable fluorescence Fv = Fm – Fo

(Oxborough et al. 2000; Baker 2008).
On days 3, 8, 11 and 24 (also 29 and 37 for treat-

ments at salinity 90 ppt) sub-samples of three dishes
from each treatment were destructively sampled. Cells
were counted using a haemacytometer. For the period of
active growth, the specific growth rate, μ (day−1, Gotelli
1995), was determined for each treatment. The propor-
tion of cells with compromised cell membranes (ie non-
viable cells) was determined using the nucleic acid stain
SYTOX-Green (Molecular Probes, S-34860, Life Tech-
nologies). SYTOX-Green was applied to a 1 ml sub-
sample at a final concentration of 0.5 μM (Veldhuis et al.
2001) and incubated for 30 min in the dark, at culture
temperature (conditions optimised prior to the study),
before viewing cells via epifluorescence microscopy
(Leitz, Ortholux II, Wetzlar, Germany). Total cells were
counted under bright field, followed by SYTOX-Green
stained cells under dark field. The proportion of live
cells was calculated as population viability = (total no.
of cells/no. of SYTOX-positive cells).

Short-term response to salinity fluctuations

Cultures of C. closterium with starting population densi-
ties of 6.7 × 105 cells ml−1, were grown in f/2 medium
with 0 or 0.75% w/v xanthan gum (at standard seawater
salinity of 35 ppt). Replicate (n = 5) cultures (1 ml) were

grown in 5 ml wells (Sterilin, 25 well plates) sealed with
Parafilm. After a growth period of 5 days, saline solution
(1 ml, distilled water and NaCl) was applied to the top
of the cultures. The applied solution was adjusted to pro-
duce final salinities within the cultures of 17.5, 35, 50,
70 and 90 ppt, giving a ‘salinity shock’.

The operating efficiency of PSII photochemistry
(Fq′/Fm′) (Oxborough et al. 2000) was calculated before
and after salt shock (at 15 s, 30 s, 1, 2, 4 and 6 min) to
monitor changes in cell photosynthetic performance.
Readings of F′ (steady state fluorescence measured under
actinic light) and Fm′ (maximum fluorescence under acti-
nic light) were taken at constant irradiance (5 ± 0.2 μmol
photons m−2 s−2) 10 s before and 15 s, 30 s, 60 s,
2 min, 4 min and 6 min after treatment. The difference
between Fm′ and F′, (Fq′ = Fm′ – F′) and the ratio
Fq′/Fm′ were calculated. Maximum photosynthetic capac-
ity (dark adapted Fv/Fm) was measured 24 h before, 1 h
before and 24 h after the salt shock.

Statistical analysis

Sample distributions were tested for normality and equal
variance using the Anderson–Darling test and F-test
respectively, conducted using Minitab software. All sam-
ple distributions in this study were positive for both nor-
mality (p > 0.05) and equal variance (p > 0.05); further
parametric testing was applied using SPSS software. A
two way analysis of variance (2-way ANOVA) test was
used to detect differences between treatments with a post
hoc Tukey test applied subsequently to determine differ-
ences between factors. A one way ANOVA was used
when comparing between more than two levels of one
variable (eg between the proportions of live cells at all
salinities within one xanthan concentration). The post
hoc Holm–Sidak method was then used to make all com-
parisons between all factors.

Results

Growth and viability at elevated salinities in a model
EPS matrix

The maximum population density of C. closterium,
attained during the growth cycle (day 0 to day 37) was
significantly higher in cultures containing xanthan gum
(0.38 and 0.75%), compared to those grown with low or
no xanthan gum (0.04 and 0%) (Figure 1; 2-way
ANOVA: F = 38.295, df = 3, p < 0.001, Holm–Sidak:
p < 0.001). At salinities 35 and 50 ppt, growth in 0.38%
and 0.75% xanthan gum more than doubled the maxi-
mum cell densities achieved compared to the controls
and those in 0.04% xanthan gum (Figure 1). At salinities
35 and 50 ppt, population growth rates were significantly
increased in cultures with 0.75% xanthan gum, compared
to the controls and those in 0.04% xanthan gum (Table 1;
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ANOVA: F = 6.413, 61.055 with df = 3 and p = 0.05,
Holm–Sidak: p < 0.05). Cultures incubated in dark con-
ditions did not achieve any population growth (data not
shown), hence the enhanced growth of cultures in high
concentrations of xanthan gum was not due to heterotro-
phic utilisation of xanthan by the diatom cells.

At the high salinities (70 and 90 ppt) the positive
effect of xanthan gum (0.38 and 0.75%) on growth rate
and maximum population density was not as conclusive
as at the lower salinity (35 and 50 ppt) treatments. How-
ever, at salinity 90 ppt, growth rates were elevated in the
0.38% and 0.75% xanthan cultures, compared to those in
0.04% or no xanthan gum (Table 1; ANOVA: F = 273
with df = 3 and p = <0.001, Holm–Sidak: p < 0.001.
Cells at this highest experimental salinity (90 ppt) with-
out xanthan gum had an extended lag phase of 24 days,
followed by a period of growth (Figure 1D) while those

in 0.04% xanthan gum did not undergo an active growth
period. Cultures at salinity 90 ppt in high levels of xan-
than gum (0.38 and 0.75%) had short three-day lag peri-
ods followed by active growth. All cultures at salinity
70 ppt achieved relatively high maximum cell densities
(Figure 1), compared with all other treatments, and all
except those with 0.04% xanthan gum remained in active
growth throughout the experimental period (Figure 1C)
and growth rates were not significantly different between
xanthan concentrations (Table 1; ANOVA: F = 0.149
with df = 3 and p = 0.927).

C. closterium grown in 0.38 and 0.75% xanthan gum
concentrations maintained higher levels of population
viability after 24 days (0.81 ± 0.06, mean ± SE, n = 8),
compared to cultures grown in low or no xanthan gum
(0.36 ± 0.06, Figure 2, ANOVA; F = 22.8 with df = 3
and p < 0.001). The largest effect on survival occurred

Figure 1. C. closterium culture population densities (ml−1) in salinities of (A) 35, (B) 50, (C) 70 and (D) 90 ppt (mean and SE,
n = 3). The growth medium contained xanthan gum concentrations of 0, 0.04, 0.38 and 0.75%.
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at salinity 50 ppt where population viability was
increased when the medium contained 0.75% xanthan
gum, compared to no xanthan gum, equating to the sur-
vival of 60% more of the total population. At salinities
35 and 70 ppt, population viabilities were more than tri-
pled in cultures containing 0.75% xanthan gum com-
pared to no xanthan gum, from 0.18 to 0.71 and from
0.26 to 0.83, respectively (Figure 2). Differences were
observed in the distributions of cells between xanthan
treatments, regardless of salinity. C. closterium cells
without xanthan gum grew as a lawn of cells on the bot-
tom of the Petri dishes, spread out and attached. Cells in
0.38 and 0.75% xanthan gum grew in dispersed clumps
suspended throughout the xanthan, suggesting that motil-
ity was curtailed, but not completely prevented, in this
thickness of matrix.

Effect of EPS on the photosynthetic efficiency of cells
exposed to long-term salt stress

The degree and direction of the effect of xanthan gum
on the maximum potential photosynthetic efficiency of
PSII (Fv/Fm), of the C. closterium cultures was depen-
dent on the concentration of the xanthan gum and on the
salinity of the medium. The presence of xanthan gum
had a protective effect on Fv/Fm when cultures were
grown in 0.75% xanthan gum, with Fv/Fm significantly
increased in cultures grown at salinities 50 and 70 ppt
(Figure 3; ANOVA: F = 4.825, 3.594 with df = 3 and
p = 0.05, Holm–Sidak: p < 0.009, 0.01). The presence
of a low amount of xanthan gum (0.04%) had either a
negative or negligible effect on Fv/Fm (Figure 3). How-
ever at salinity 90 ppt, cultures grown in 0.38% xanthan

gum had an increased Fv/Fm (ANOVA: F = 7.807 with
df = 3 and p < 0.001, Holm–Sidak: p < critical level).

Protection of photosynthetic efficiency by xanthan gum
during salinity fluctuations

Cultures grown in 0 and 0.75% xanthan gum were sub-
jected to an acute salinity shock by the application of
saline solutions. The cultures grown in xanthan gum
maintained high Fq′/Fm′ (operating efficiency of PSII
photochemistry) levels (Figure 4); between 96 and 100%
of their original values (Figure 5) after the salinity shock
was applied. In cultures grown in 0.75% xanthan gum a
subtle decline in Fq′/Fm′ occurred between 2 and 6 min
after application. However, across all treatments, Fq′/Fm′
did not fall below 97% of its original value (Figure 5).
By 24 h after treatment, cultures treated with solutions
of 50, 70 and 90 ppt salinity had increased Fv/Fm

(Figure 6A); the same response as cultures treated with
the control solution at 35 ppt salinity (Figure 6B). This
response was statistically significant at salinities 70 and
35 ppt only (t-test: t = –3.924, –3.881 with df = 6, 8 and
p = 0.008, 0.005).

Cells grown in liquid medium (without xanthan
gum), when exposed to a rapid change in salinity, suf-
fered a steep decline in Fq′/Fm′ (Figure 4) within 30 s of
treatment. The level of decline in Fq′/Fm′ was dependant
on the magnitude of the salinity change (Figure 5), with
the largest decrease observed after application of solution
at salinity 90 ppt (65%). Recovery of Fq′/Fm′ was
observed (Figure 4), with recovery time increasing with
the increasing salinity of the treatment (Figure 4). By
24 h after treatment, the Fv/Fm of all cultures had

Table 1. Average specific growth rates, μ (d−1) for the period of active growth of C. closterium cultures (n = 3).

Xanthan gum in medium w/v (%)

Active growth

Period (d)
μ μ

Mean (d−1) SE

35 0 0–8 0.14 0.009
35 0.04 0–8 0.13 0.027
35 0.38 0–8 0.2 0.005
35 0.75 0–8 0.27 0.042
50 0 0–8 0.12 0.03
50 0.04 0–8 0.15 0.031
50 0.38 0–8 0.23 0.015
50 0.75 0–8 0.52 0.01
70 0 0–8 0.25 0.014
70 0.04 0–8 0.26 0.021
70 0.38 0–8 0.29 0.052
70 0.75 0–8 0.27 0.067
90 0 3–11 0.04 0.003
90 0.04 3–11 0.04 0.014
90 0.38 3–11 0.15 0.013
90 0.75 3–11 0.17 0.013
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returned to their original level (as before treatment), with
the exception of salinity 70 ppt where Fv/Fm increased
(Figure 6B). Therefore the maintenance of Fv/Fm was
not dependent on growth in xanthan gum.

Discussion

Natural biofilms consist of a heterogeneous range of
microbial taxa, chemical constituents and physical
structures (Dobretsov et al. 2013; Mieszkin et al. 2013).
The complexity present in natural biofilms provides
challenges in determining the exact nature of cell–cell
and cell–environment interactions, though broad scale
patterns can be determined. Experimental studies using
simplified systems have been used successfully to demon-
strate species-specific positive and negative interactions

between bacteria and diatoms, EPS production and con-
centrations, cell settlement and environmental conditions
such as flow, carbon cycling and salinity conditions
(Bruckner et al. 2011; Krembs et al. 2011; Aslam et al.
2012; Taylor et al. 2013; Zargiel & Swain 2014). The
reductionist approach (a model system) was used in the
present study to assess the role of EPS in protecting a
biofilm-forming diatom during elevated and fluctuating
salinities. EPS is a key characteristic of diatom-dominated
biofilms (Underwood & Paterson 2003), and the results
presented here demonstrate that the presence of an EPS
matrix leads to a higher prevalence of viable cells (cells
which have the capacity to divide in the future) in
biofilms undergoing elevated and fluctuating salinities,
such as would be experienced on ships’ hulls, in sea-ice
and intertidal benthic environments. A natural biofilm

Figure 2. Proportion of live C. closterium cells (population viability) during growth in salinities of (A) 35, (B) 50, (C) 70 and (D)
90 ppt (mean and SE, n = 3). The growth medium contained xanthan gum at concentrations of 0, 0.04, 0.38 and 0.75%.
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contains an EPS matrix consisting of polymers from mul-
tiple sources (algal, bacterial, fungal, animal) and can be
subject to various levels of both production and degrada-
tion by heterotrophic organisms (Dobretsov et al. 2013;
Taylor et al. 2013). Such complexity is not possible to
replicate under control conditions, but xanthan gum is
widely used and accepted as an analogue for EPS in
many studies (Passow & Alldredge 1995; Hart et al.
2001; Krembs et al. 2011; Aslam et al. 2012). Therefore
EPS (represented by xanthan gum) appears to be an
important adaptation which promotes population persis-
tence for diatom biofilms, as has been previously demon-
strated in bacterial biofilms.

Very few studies on diatom biofilm EPS production
and composition also include measurements of the poten-
tial growth benefits of being in an EPS matrix. The
experimental design used here aimed at removing as
many other possible variables known to effect diatom

physiology and EPS production, such as light–dark
cycles and varying irradiance levels. This enabled the
focus to be on the impacts of the EPS matrix on cell
growth and viability. The growth rates and photosyn-
thetic parameters of C. closterium reported here are very
similar to those reported from a range of other studies
(Smith & Underwood 2000; Staats et al. 2000; Under-
wood et al. 2004; Waring et al. 2006). This provides
confidence in the design of the presented model system,
and shows that there are benefits to cells of growing in
an EPS matrix when challenged with salinity stress.
However, the elevated growth rates observed with the
addition of EPS at standard salinity in this study are in
contrast to results from a sea-ice diatom, Fragilariopsis
cylindrus, where growth rate was unaffected by addition
of 0.1 and 0.5% xanthan gum at standard (34 ppt) and
elevated (52 ppt) salinities (Aslam et al. 2012). However,
for C. closterium at standard and elevated salinities, the

Figure 3. Dark-adapted Fv/Fm of C. closterium cells grown at salinities (A) 35, (B) 50, (C) 70 and (D) 90 ppt and in medium con-
taining xanthan gum concentrations of 0, 0.04, 0.38 and 0.75% (mean and SE, n = 3).
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growth rate was increased by the addition of xanthan
gum at 0.38 and 0.75%, respectively. The two studies
are not directly comparable, as in the Aslam et al.
(2012) study F. cylindrus cultures at salinities 34 and 52
ppt at 0°C had a significant pre-experimental acclimation
period. Growth rates of F. cylindrus at salinities 34 and
52 ppt were 0.25 d−1 ± 0.03 and 0.13 d−1 ± 0.133
respectively (Aslam et al. 2012), which are comparable
to growth rates of C. closterium at standard (35 ppt)
salinity containing 0.38% xanthan gum and elevated (50
ppt) salinities without xanthan gum (0.2 d−1 ± 0.005 and
0.12 d−1 ± 0.03 respectively). Aslam et al. (2012) found
that addition of xanthan gum inhibited freezing of the
medium during stepwise decreases in temperature from
0°C to –12°C. F. cylindrus at standard salinity without
xanthan gum continued to grow at –4°C. However,
growth was suppressed in cultures with 0.1% xanthan
gum. F. cylindrus with 0.5% xanthan gum continued to
grow at –4°C and freezing was avoided until the temper-
ature was reduced to –12°C (Aslam et al. 2012). The

differences in the level of ‘growth enhancement’ due to
the presence of xanthan gum between these studies may
therefore reflect an interplay between the presence of an
EPS matrix, the salinity of the medium and ice formation
in the low temperatures tested by Aslam et al. (2012).
There may also be species or habitat specific responses
to living in xanthan gum. In general, sea-ice diatoms are
more acclimated to changes in salinity due to seasonal
changes with temperature (Ewert & Deming 2013).
Aslam et al. (2012) found that F. cylindrus produced
proportionally higher amounts of complex EPS; hence
such species may be pre-adapted to salinity changes.

Other studies on algal EPS have concentrated on fac-
tors affecting production (Wolfstein & Stal 2002) and
analysis of structure (Mishra & Jha 2009). Hence the
findings of elevated population viability and maximum
population densities with the addition of xanthan, at stan-
dard salinity, provides the first evidence for benthic dia-
toms that being embedded in an EPS matrix is beneficial
to growth regardless of salinity. The mechanistic basis of

Figure 4. Fq′/Fm′ response of C. closterium cultures grown at salinity 35 ppt in 0 and 0.75% xanthan gum when salt shocked to
salinities (A) 17.5, (B) 35, (C) 50, (D) 70 and (E) 90 ppt. Mean and SE bars shown (n = 5). = time of shock (0 min).
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this benefit may be similar to the EPS capsule of bacte-
ria, where nutrients and exoenzymes are concentrated
close to the cell membrane (Tonn & Gander 1979), thus
facilitating faster growth. However, at standard salinity
the presence of xanthan gum at a low concentration of
0.04% had a detrimental effect on Fv/Fm, and at high
salinity (90 ppt) it also had a detrimental effect on
growth and viability. There may be a particular level of
matrix density that is required for the physical benefits
of being in a biofilm to manifest themselves. Below this
threshold, at very low EPS concentrations, potential neg-
ative effects include reduction in nutrient diffusion to the
cells, and the inhibition of movement. These concepts
were not addressed in this study and require further
investigation.

The beneficial effects of EPS were greater at the
higher salinities tested in this study. However, the type
and level of physiological benefit provided by xanthan (at
0.75 and 0.38%) varied with its salinity, with population
density, growth rate and viability most enhanced at salini-
ties 35 and 50 ppt, when Fv/Fm was also maintained. At
salinity 70 ppt, Fv/Fm was enhanced by xanthan gum (at
0.75 and 0.38%). However, population density and viabil-
ity data were inconclusive. Cultures at salinity 90 ppt had
a similar growth curve, after a three-day lag period, as
control cells (at salinity 35 ppt) providing xanthan was
present at 0.75 or 0.38% but viability was increased with
the presence of xanthan gum. Salinity of 75 ppt is a
known upper limit for growth in many benthic diatom
species (Clavero et al. 2000) and natural benthic microal-
gal diversity is known to decrease at salinities above 75
ppt (Herbst & Blinn 1998). Hence resource allocation
was similar at salinities 35 and 50 ppt but a change in
allocation occurred at salinities 70 and 90 ppt.

Ambient salinity is known to affect the quantity and
composition of EPS in diatoms (Allan et al. 1972;
Abdullahi et al. 2006; Apoya-Horton et al. 2006). When
acclimated to elevated salinity (52 ppt) the sea-ice
diatom F. cylindrus produced around three times more
EPS than at standard salinity (34 ppt) (Aslam et al.
2012). C. closterium cells may have changed the
composition of their EPS. This is a known response to
hyper-salinity and an adaptation to resist freezing in
brine channels during sea-ice formation when growth is
limited (Krembs & Deming 2008), for example in Phae-
odactylum tricornutum (Abdullahi et al. 2006) and Nitzs-
chia frustulum (Allan et al. 1972). It was not possible to
test this in the experiments presented due to the masking
nature of the xanthan in the medium. EPS used for
motility is also altered during hypo- and hyper-saline
conditions in C. closterium (Apoya-Horton et al. 2006),
which is known to affect diatom migration (Sauer et al.
2002).

Living in xanthan gum allowed the operating effi-
ciency of PSII photochemistry (Fq′/Fm′) of C. closterium

Figure 5. The initial percentage reduction in Fqʹ/Fmʹ in
C. closterium cultures grown in 0% and 0.75% xanthan gum,
30 s after exposure to salinities of 17.5, 35, 50, 70 and 90 ppt
(mean and SE, n = 5).

Figure 6. Fv/Fm of C. closterium cultures grown in (A) 0%
and (B) 0.75% xanthan gum. Means and SE bars are shown for
Fv/Fm before and 24 h after exposure to salt shock (of final
salinities 17.5 to 90 ppt) (n = 5). = a significant difference
between the Fv/Fm before and after the salinity shock
(p < 0.05).
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cells to be maintained during salinity shock; hence it is
assumed that the photosynthetic apparatus was protected,
most likely through forming a physical barrier around
cells. Living in an EPS matrix when the external envi-
ronment is undergoing salinity changes will slow the per-
meation of salt and osmotic stress to embedded cells.
The mechanical action of forming a physical diffusion
barrier is a known function of EPS in sea ice, where
brine channels are ‘plugged’ by the EPS (Krembs &
Deming 2008). If that change in salinity is transient then
cells within the gel will not have used energy acclimat-
ing to a changing external salinity environment. How-
ever, if the altered salinity is permanent the gel would
mediate the penetration of ions, so reducing osmotic
stress to the cells and thereby the amount of energy used
in protective mechanisms. In addition, an EPS matrix
may collect and concentrate compatible solutes close to
the cells which would help to retain water activity, stabi-
lise macromolecules and aid osmoregulation (Yancey
et al. 1982), allowing the maintenance of cellular func-
tion during salinity shocks. Under hypo-saline condi-
tions, diatoms expel compatible solutes into the
environment, which are retained by the EPS matrix and
can be re-imported during hyper-saline conditions, thus
avoiding the metabolic cost of synthesis. For example in
hypo-saline conditions, C. closterium rapidly excretes
dimethylsulfonioproprionate (DMSP) (Nilsson &
Sundbäck 1996; Van Bergeijk et al. 2003) and amino
acids (Admiraal et al. 1984) into the surrounding EPS. A
possible mechanism for the release and import of com-
patible solutes is a change in the selective permeability
of the cytoplasmic membrane caused by an altered envi-
ronmental salinity, with the level of permeability depend-
ing on the magnitude of the salinity change (Schobert
1980). Regulation of compatible solutes by export and
import is thought to be a mechanism of short term
osmo-acclimation for diatoms living in the highly fluctu-
ating salinities of intertidal sediments (Van Bergeijk
et al. 2003).

The results presented also demonstrate that the devel-
opment of a diatom biofilm under normal growth condi-
tions can help cells to maintain photosynthetic function
when subjected to salinity shocks such as those found in
intertidal sediments during sea ice development, perma-
nent structures in tidal estuaries, and in maritime ship-
ping. It is also highly likely that other organisms (eg
bacteria, fungi and macroalgal sporelings; Dobretsov
et al. 2013; Mieszkin et al. 2013) living within photosyn-
thethic biofilms benefit from the EPS matrix predomi-
nantly produced by diatoms. Of particular interest is the
idea that cell lysis and local decomposition of the matrix
creates pores allowing better nutrient transport to the
cells (Webb et al. 2003). Aggregates of dead cells were
observed in medium containing xanthan gum, indicating
mechanistic control of cell death. A relationship between

cell aggregation and population viability has also been
reported in the diatom Thalassiosira weissflogii; aggrega-
tion prolonged high population viabilities in dark, nutri-
ent-limited conditions (Garvey et al. 2007). Quorum
sensing, a cell–cell communication mechanism used by
Gram-negative bacteria is known to help regulate certain
components of EPS (De Kievit 2009; Borlee et al. 2010)
and an adaptive role for diatom cell death could poten-
tially be investigated in the C. closterium model EPS
system developed here.

In conclusion, this study has demonstrated for the
first time that the presence of EPS can increase the via-
bility, maximum population density and growth rate of
diatom populations in biofilms in standard and elevated
salinities. C. closterium is a cosmopolitan diatom spe-
cies, widely distributed in biofilms on natural silts, sand,
rocks, sea ice, biotic and artificial substrata and has a
similar photophysiology and EPS physiology to many of
the other widespread biofilm-forming diatom genera, eg
Achnanthes, Nitzschia and Navicula (Underwood &
Paterson 2003; Chiovitti et al. 2004; Bellinger et al.
2005; Apoya-Horton et al. 2006). These taxonomic simi-
larities, and the similarity in the emergent properties of
mature biofilms (resilience, intense microbial coupling,
and productivity), despite both structural and taxonomic
diversity (Decho 1990; Dobretsov et al. 2013; Mieszkin
et al. 2013) suggest that the beneficial properties of
being embedded in an EPS matrix for cell growth, via-
bility and photosynthesis described here may be applica-
ble to marine photosynthetic biofilms in general.
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