177 research outputs found
Modification of surface wettability of sodium ionomer sheets via atmospheric plasma treatment
[EN] In this study, atmospheric plasma treatment has been used to modify the wetting properties of ethylene-methacrylic acid sodium ionomer. The effects of the plasma treatment on surface properties of this ionomer have been followed by contact angle measurements, Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). With the use of these techniques, the overall effects on activation-functionalization and surface topography changes have been determined in terms of the processing parameters of the atmospheric plasma treatment (rate and distance). The obtained results show a remarkable increase of the wetting properties and optimum balanced behavior is obtained for atmospheric plasma treatment with a rate of 100 mm/s and a distance of 6 mm; in this case, surface free energy is increased from 33 mJ/m2 (untreated ionomer) up to 62 mJ/m2, maintaining good transparency. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers Copyright © 2012 Society of Plastics Engineers.J.M. Espana thanks to the Polytechnic University of Valencia (UPV) for their financial support through an FPI-UPV grant. The translation of this article was funded by the Universidad Politecnica de Valencia, Spain. This work is a part of the project IPT-310000-2010-037,"ECOTEXCOMP: Research and development of textile structures useful as reinforcement of composite materials with marked ecological character." funded by the "Ministerio de Ciencia e Innovacion," with an aid of 189540.20 euros, within the "Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011" and funded by the European Union through FEDER funds, Technology Fund 2007-2013, Operational Programme on R+D+i for and on behalf of the companies." Also, microscopy services at UPV are acknowledged for SEM and AFM support.España Giner, JM.; García Sanoguera, D.; Sánchez Nacher, L.; López Martínez, J.; Balart Gimeno, RA. (2012). Modification of surface wettability of sodium ionomer sheets via atmospheric plasma treatment. Polymer Engineering and Science. 52(12):2573-2580. https://doi.org/10.1002/pen.23218S25732580521
Design, construction and characterization of a set of insulated bacterial promoters
We have generated a series of variable-strength, constitutive, bacterial promoters that act predictably in different sequence contexts, span two orders of magnitude in strength and contain convenient sites for cloning and the introduction of downstream open-reading frames. Importantly, their design insulates these promoters from the stimulatory or repressive effects of many 5′- or 3′-sequence elements. We show that different promoters from our library produce constant relative levels of two different proteins in multiple genetic contexts. This set of promoters should be a useful resource for the synthetic-biology community
Pathogen detection, testing, and control in fresh broccoli sprouts
BACKGROUND: The recent increased interest in consuming green vegetable sprouts has been tempered by the fact that fresh sprouts can in some cases be vehicles for food-borne illnesses. They must be grown according to proper conditions of sanitation and handled as a food product rather than as an agricultural commodity. When sprouts are grown in accordance with the criteria proposed from within the sprout industry, developed by regulatory agencies, and adhered to by many sprouters, green sprouts can be produced with very low risk. Contamination may occur when these guidelines are not followed. METHODS: A one year program of microbial hold-and-release testing, conducted in concert with strict seed and facility cleaning procedures by 13 U.S. broccoli sprout growers was evaluated. Microbial contamination tests were performed on 6839 drums of sprouts, equivalent to about 5 million consumer packages of fresh green sprouts. RESULTS: Only 24 (0.75%) of the 3191 sprout samples gave an initial positive test for Escherichia coli O157:H7 or Salmonella spp., and when re-tested, 3 drums again tested positive. Composite testing (e.g., pooling up to 7 drums for pathogen testing) was equally sensitive to single drum testing. CONCLUSION: By using a "test-and-re-test" protocol, growers were able to minimize crop destruction. By pooling drums for testing, they were also able to reduce testing costs which now represent a substantial portion of the costs associated with sprout growing. The test-and-hold scheme described herein allowed those few batches of contaminated sprouts to be found prior to packaging and shipping. These events were isolated, and only safe sprouts entered the food supply
Observations on comatose survivors of cardiopulmonary resuscitation with generalized myoclonus
BACKGROUND: There is only limited data on improvements of critical medical care is resulting in a better outcome of comatose survivors of cardiopulmonary resuscitation (CPR) with generalized myoclonus. There is also a paucity of data on the temporal dynamics of electroenephalographic (EEG) abnormalities in these patients. METHODS: Serial EEG examinations were done in 50 comatose survivors of CPR with generalized myoclonus seen over an 8 years period. RESULTS: Generalized myoclonus occurred within 24 hours after CPR. It was associated with burst-suppression EEG (n = 42), continuous generalized epileptiform discharges (n = 5), alpha-coma-EEG (n = 52), and low amplitude (10 μV <) recording (n = 1). Except in 3 patients, these EEG-patterns were followed by another of these always nonreactive patterns within one day, mainly alpha-coma-EEG (n = 10) and continuous generalized epileptiform discharges (n = 9). Serial recordings disclosed a variety of EEG-sequences composed of these EEG-patterns, finally leading to isoelectric or flat recordings. Forty-five patients died within 2 weeks, 5 patients survived and remained in a permanent vegetative state. CONCLUSION: Generalized myoclonus in comatose survivors of CPR still implies a poor outcome despite advances in critical care medicine. Anticonvulsive drugs are usually ineffective. All postanoxic EEG-patterns are transient and followed by a variety of EEG sequences composed of different EEG patterns, each of which is recognized as an unfavourable sign. Different EEG-patterns in anoxic encephalopathy may reflect different forms of neocortical dysfunction, which occur at different stages of a dynamic process finally leading to severe neuronal loss
Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells
<p>Abstract</p> <p>Background</p> <p>Celastrol is an active ingredient of the traditional Chinese medicinal plant <it>Tripterygium Wilfordii</it>, which exhibits significant antitumor activity in different cancer models <it>in vitro </it>and <it>in vivo</it>; however, the lack of information on the target and mechanism of action of this compound have impeded its clinical application. In this study, we sought to determine the mode of action of celastrol by focusing on the processes that mediate its anticancer activity.</p> <p>Methods</p> <p>The downregulation of heat shock protein 90 (HSP90) client proteins, phosphorylation of c-Jun NH2-terminal kinase (JNK), and cleavage of PARP, caspase 9 and caspase 3 were detected by western blotting. The accumulation of reactive oxygen species (ROS) was analyzed by flow cytometry and fluorescence microscopy. Cell cycle progression, mitochondrial membrane potential (MMP) and apoptosis were determined by flow cytometry. Absorption spectroscopy was used to determine the activity of mitochondrial respiratory chain (MRC) complexes.</p> <p>Results</p> <p>Celastrol induced ROS accumulation, G2-M phase blockage, apoptosis and necrosis in H1299 and HepG2 cells in a dose-dependent manner. N-acetylcysteine (NAC), an antioxidative agent, inhibited celastrol-induced ROS accumulation and cytotoxicity. JNK phosphorylation induced by celastrol was suppressed by NAC and JNK inhibitor SP600125 (SP). Moreover, SP significantly inhibited celastrol-induced loss of MMP, cleavage of PARP, caspase 9 and caspase 3, mitochondrial translocation of Bad, cytoplasmic release of cytochrome c, and cell death. However, SP did not inhibit celastrol-induced ROS accumulation. Celastrol downregulated HSP90 client proteins but did not disrupt the interaction between HSP90 and cdc37. NAC completely inhibited celastrol-induced decrease of HSP90 client proteins, catalase and thioredoxin. The activity of MRC complex I was completely inhibited in H1299 cells treated with 6 μM celastrol in the absence and presence of NAC. Moreover, the inhibition of MRC complex I activity preceded ROS accumulation in H1299 cells after celastrol treatment.</p> <p>Conclusion</p> <p>We identified ROS as the key intermediate for celastrol-induced cytotoxicity. JNK was activated by celastrol-induced ROS accumulation and then initiated mitochondrial-mediated apoptosis. Celastrol induced the downregulation of HSP90 client proteins through ROS accumulation and facilitated ROS accumulation by inhibiting MRC complex I activity. These results identify a novel target for celastrol-induced anticancer activity and define its mode of action.</p
Whether weather matters: Evidence of association between in utero meteorological exposures and foetal growth among Indigenous and non-Indigenous mothers in rural Uganda
Pregnancy and birth outcomes have been found to be sensitive to meteorological variation, yet few studies explore this relationship in sub-Saharan Africa where infant mortality rates are the highest in the world. We address this research gap by examining the association between meteorological factors and birth weight in a rural population in southwestern Uganda. Our study included hospital birth records (n = 3197) from 2012 to 2015, for which we extracted meteorological exposure data for the three trimesters preceding each birth. We used linear regression, controlling for key covariates, to estimate the timing, strength, and direction of meteorological effects on birth weight. Our results indicated that precipitation during the third trimester had a positive association with birth weight, with more frequent days of precipitation associated with higher birth weight: we observed a 3.1g (95% CI: 1.0–5.3g) increase in birth weight per additional day of exposure to rainfall over 5mm. Increases in average daily temperature during the third trimester were also associated with birth weight, with an increase of 41.8g (95% CI: 0.6–82.9g) per additional degree Celsius. When the sample was stratified by season of birth, only infants born between June and November experienced a significant associated between meteorological exposures and birth weight. The association of meteorological variation with foetal growth seemed to differ by ethnicity; effect sizes of meteorological were greater among an Indigenous subset of the population, in particular for variation in temperature. Effects in all populations in this study are higher than estimates of the African continental average, highlighting the heterogeneity in the vulnerability of infant health to meteorological variation in different contexts. Our results indicate that while there is an association between meteorological variation and birth weight, the magnitude of these associations may vary across ethnic groups with differential socioeconomic resources, with implications for interventions to reduce these gradients and offset the health impacts predicted under climate change
Profiling of the Tetraspanin CD151 Web and Conspiracy of CD151/Integrin β1 Complex in the Progression of Hepatocellular Carcinoma
Tetraspanin CD151 has been implicated in metastasis through forming complexes with different molecular partners. In this study, we mapped tetraspanin web proteins centered on CD151, in order to explore the role of CD151 complexes in the progression of hepatocellular carcinoma (HCC). Immunoprecipitation was used to isolate tetraspanin complexes from HCCLM3 cells using a CD151 antibody, and associated proteins were identified by mass spectrometry. The interaction of CD151 and its molecular partners, and their roles in invasiveness and metastasis of HCC cells were assayed through disruption of the CD151 network. Finally, the clinical implication of CD151 complexes in HCC patients was also examined. In this study, we identified 58 proteins, characterized the tetraspanin CD151 web, and chose integrin β1 as a main partner to further investigate. When the CD151/integrin β1 complex in HCC cells was disrupted, migration, invasiveness, secretion of matrix metalloproteinase 9, and metastasis were markedly influenced. However, both CD151 and integrin β1 expression were untouched. HCC patients with high expression of CD151/integrin β1 complex had the poorest prognosis of the whole cohort of patients. Together, our data show that CD151 acts as an important player in the progression of HCC in an integrin β1-dependent manner
Understory Bird Communities in Amazonian Rainforest Fragments: Species Turnover through 25 Years Post-Isolation in Recovering Landscapes
Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragments of 1–100 ha, beginning before the fragments were isolated in the 1980s, and continuing through 2007. Using a method that accounts for imperfect detection, we estimated extinction and colonization based on standardized mist-net surveys within discreet time intervals (1–2 preisolation samples and 4–5 post-isolation samples). Between preisolation and 2007, all fragments lost species in an area-dependent fashion, with loss of as few as <10% of preisolation species from 100-ha fragments, but up to 70% in 1-ha fragments. Analysis of individual time intervals revealed that the 2007 result was not due to gradual species loss beginning at isolation; both extinction and colonization occurred in every time interval. In the last two samples, 2000 and 2007, extinction and colonization were approximately balanced. Further, 97 of 101 species netted before isolation were detected in at least one fragment in 2007. Although a small subset of species is extremely vulnerable to fragmentation, and predictably goes extinct in fragments, developing second growth in the matrix around fragments encourages recolonization in our landscapes. Species richness in these fragments now reflects local turnover, not long-term attrition of species. We expect that similar processes could be operating in other fragmented systems that show unexpectedly low extinction
Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways
BACKGROUND: Metabolic phenotyping has become an important 'bird's-eye-view' technology which can be applied to higher organisms, such as model plant and animal systems in the post-genomics and proteomics era. Although genotyping technology has expanded greatly over the past decade, metabolic phenotyping has languished due to the difficulty of 'top-down' chemical analyses. Here, we describe a systematic NMR methodology for stable isotope-labeling and analysis of metabolite mixtures in plant and animal systems. METHODOLOGY/PRINCIPAL FINDINGS: The analysis method includes a stable isotope labeling technique for use in living organisms; a systematic method for simultaneously identifying a large number of metabolites by using a newly developed HSQC-based metabolite chemical shift database combined with heteronuclear multidimensional NMR spectroscopy; Principal Components Analysis; and a visualization method using a coarse-grained overview of the metabolic system. The database contains more than 1000 (1)H and (13)C chemical shifts corresponding to 142 metabolites measured under identical physicochemical conditions. Using the stable isotope labeling technique in Arabidopsis T87 cultured cells and Bombyx mori, we systematically detected >450 HSQC peaks in each (13)C-HSQC spectrum derived from model plant, Arabidopsis T87 cultured cells and the invertebrate animal model Bombyx mori. Furthermore, for the first time, efficient (13)C labeling has allowed reliable signal assignment using analytical separation techniques such as 3D HCCH-COSY spectra in higher organism extracts. CONCLUSIONS/SIGNIFICANCE: Overall physiological changes could be detected and categorized in relation to a critical developmental phase change in B. mori by coarse-grained representations in which the organization of metabolic pathways related to a specific developmental phase was visualized on the basis of constituent changes of 56 identified metabolites. Based on the observed intensities of (13)C atoms of given metabolites on development-dependent changes in the 56 identified (13)C-HSQC signals, we have determined the changes in metabolic networks that are associated with energy and nitrogen metabolism
- …