61 research outputs found

    Ungulate browsing shapes climate change impacts on forest biodiversity in Hungary

    Get PDF
    Climate change can result in a slow disappearance of forests dominated by less drought-tolerant native European beech (Fagus sylvatica) and oak species (Quercus spp.) and further area expansion of more drought-tolerant non-native black locust (Robinia pseudoacacia) against those species in Hungary. We assumed that the shift in plant species composition was modified by selective ungulate browsing. Thus, we investigated which woody species are selected by browsing game. We have collected data on the species composition of the understory and the browsing impact on it in five different Hungarian even-aged forests between 2003 and 2005. Based on these investigations the non-native Robinia pseudoacacialiving under more favourable climatic conditions was generally preferred (Jacobs’ selectivity index: D=0.04±0.77), while the nativeFagus sylvatica and Quercus spp. (Q. petraea, Q. robur), both more vulnerable to increasing aridity, were avoided (D=-0.37±0.11;-0.79±0.56;-0.9±0.16; respectively) among target tree species. However, economically less or not relevant species, e.g. elderberry (Sambucus spp.), blackberry (Rubus spp.) or common dogwood (Cornus sanguinea) were the most preferred species (D=0.01±0.71; -0.12±0.58; -0.2±0.78, respectively). Our results imply that biodiversity conservation, i.e. maintaining or establishing a multi-species understory layer, can be a good solution to reduce the additional negative game impact on native target tree species suffering from drought. Due to preference for Robinia pseudoacaciaselective browsing can decelerate the penetration of this species into native forest habitats. We have to consider the herbivorous pressure of ungulates and their feeding preferences in planning our future multifunctional forests in the light of climate change impacts

    Hyperuricaemia and gout: A review

    No full text

    Durability Properties of Cleaner Cement Mortar with By-Products of Tire Recycling

    No full text
    This study investigates using rubber-fiber powder (RFP), which is by-products of tire recycling, as an additive in a cement-based mortar. Five different RFP ratios of 5, 10, 15, 20, and 25% were used in this study as an additive filler side by side with reducing the cement content by the same amount. In addition to the fresh properties and the heat of hydration, the physical characterization of the rubberized mixtures including the compressive, and flexural strength the hardened density, absorption, and air voids were investigated. The results were compared to those where the cement content was reduced without adding the RFP as well as a reference mortar mixture having 0% RFP. To evaluate the new rubberized mortar as a reinforcement corrosion protector, the bulk and surface electrical resistivity, the accelerated carbon dioxide penetration, and the rapid chloride ion penetration tests were determined. Although there was a reduction in some of the mechanical characterizations, this study revealed that the recycled rubber-fiber powder could be used in the mortar as an additive to provide more corrosion resistance and less heat of hydration compared to the control mixture. Adding the RFP lowered and delayed the peak temperature for the heat of hydration compared to reducing the cement content only. From the durability side, mortar mixtures with up to 20% RFP showed an improved reinforcement corrosion resistance by increasing both bulk and surface electrical resistivity

    An external matrix assisted laser desorption ionization source for flexible FT-ICR mass spectrometry imaging with internal calibration on adjacent samples

    Get PDF
    We describe the construction and application of a new MALDI source for FT-ICR mass spectrometry imaging. The source includes a translational X-Y positioning stage with a 10×10 cm range of motion for analysis of large sample areas, a quadrupole for mass selection, and an external octopole ion trap with electrodes for the application of an axial potential gradient for controlled ion ejection. An off-line LC MALDI MS/MS run demonstrates the utility of the new source for data- and position-dependent experiments. A FT-ICR MS imaging experiment of a coronal rat brain section yields ∼200 unique peaks from m/z 400-1100 with corresponding mass-selected images. Mass spectra from every pixel are internally calibrated with respect to polymer calibrants collected from an adjacent slide
    corecore