71 research outputs found
Drones and Digital Photogrammetry: From Classifications to Continuums for Monitoring River Habitat and Hydromorphology
Recently, we have gained the opportunity to obtain very high-resolution imagery
and topographic data of rivers using drones and novel digital photogrammetric
processing techniques. The high-resolution outputs from this method are
unprecedented, and provide the opportunity to move beyond river habitat classification
systems, and work directly with spatially explicit continuums of data.
Traditionally, classification systems have formed the backbone of physical river
habitat monitoring for their ease of use, rapidity, cost efficiency, and direct comparability.
Yet such classifications fail to characterize the detailed heterogeneity
of habitat, especially those features which are small or marginal. Drones and
digital photogrammetry now provide an alternative approach for monitoring
river habitat and hydromorphology, which we review here using two case studies.
First, we demonstrate the classification of river habitat using drone imagery
acquired in 2012 of a 120 m section of the San Pedro River in Chile, which was at
the technological limits of what could be achieved at that time. Second, we
review how continuums of data can be acquired, using drone imagery acquired
in 2016 from the River Teme in Herefordshire, England. We investigate the precision
and accuracy of these data continuums, highlight key current challenges,
and review current best practices of data collection, processing, and management.
We encourage further quantitative testing and field applications. If current
difficulties can be overcome, these continuums of geomorphic and hydraulic
information hold great potential for providing new opportunities for understanding
river systems to the benefit of both river science and management
Anatomy of a microearthquake sequence on an active normal fault
The analysis of similar earthquakes, such as events in a seismic sequence, is an effective tool with which to monitor and study source processes and to understand the mechanical and dynamic states of active fault systems. We are observing seismicity that is primarily concentrated in very limited regions along the 1980 Irpinia earthquake fault zone in Southern Italy, which is a complex system characterised by extensional stress regime. These zones of weakness produce repeated earthquakes and swarm-like microearthquake sequences, which are concentrated in a few specific zones of the fault system. In this study, we focused on a sequence that occurred along the main fault segment of the 1980 Irpinia earthquake to understand its characteristics and its relation to the loading-unloading mechanisms of the fault system
Frequent Missense and Insertion/Deletion Polymorphisms in the Ovine Shadoo Gene Parallel Species-Specific Variation in PrP
BACKGROUND: The cellular prion protein PrP(C) is encoded by the Prnp gene. This protein is expressed in the central nervous system (CNS) and serves as a precursor to the misfolded PrP(Sc) isoform in prion diseases. The prototype prion disease is scrapie in sheep, and whereas Prnp exhibits common missense polymorphisms for V136A, R154H and Q171R in ovine populations, genetic variation in mouse Prnp is limited. Recently the CNS glycoprotein Shadoo (Sho) has been shown to resemble PrP(C) both in a central hydrophobic domain and in activity in a toxicity assay performed in cerebellar neurons. Sho protein levels are reduced in prion infections in rodents. Prompted by these properties of the Sho protein we investigated the extent of natural variation in SPRN. PRINCIPAL FINDINGS: Paralleling the case for ovine versus human and murine PRNP, we failed to detect significant coding polymorphisms that alter the mature Sho protein in a sample of neurologically normal humans, or in diverse strains of mice. However, ovine SPRN exhibited 4 missense mutations and expansion/contraction in a series of 5 tandem Ala/Gly-containing repeats R1-R5 encoding Sho's hydrophobic domain. A Val71Ala polymorphism and polymorphic expansion of wt 67(Ala)(3)Gly70 to 67(Ala)(5)Gly72 reached frequencies of 20%, with other alleles including Delta67-70 and a 67(Ala)(6)Gly73 expansion. Sheep V71, A71, Delta67-70 and 67(Ala)(6)Gly73 SPRN alleles encoded proteins with similar stability and posttranslational processing in transfected neuroblastoma cells. SIGNIFICANCE: Frequent coding polymorphisms are a hallmark of the sheep PRNP gene and our data indicate a similar situation applies to ovine SPRN. Whether a common selection pressure balances diversity at both loci remains to be established
Dengue Virus Capsid Protein Usurps Lipid Droplets for Viral Particle Formation
Dengue virus is responsible for the highest rates of disease and mortality among the members of the Flavivirus genus. Dengue epidemics are still occurring around the world, indicating an urgent need of prophylactic vaccines and antivirals. In recent years, a great deal has been learned about the mechanisms of dengue virus genome amplification. However, little is known about the process by which the capsid protein recruits the viral genome during encapsidation. Here, we found that the mature capsid protein in the cytoplasm of dengue virus infected cells accumulates on the surface of ER-derived organelles named lipid droplets. Mutagenesis analysis using infectious dengue virus clones has identified specific hydrophobic amino acids, located in the center of the capsid protein, as key elements for lipid droplet association. Substitutions of amino acid L50 or L54 in the capsid protein disrupted lipid droplet targeting and impaired viral particle formation. We also report that dengue virus infection increases the number of lipid droplets per cell, suggesting a link between lipid droplet metabolism and viral replication. In this regard, we found that pharmacological manipulation of the amount of lipid droplets in the cell can be a means to control dengue virus replication. In addition, we developed a novel genetic system to dissociate cis-acting RNA replication elements from the capsid coding sequence. Using this system, we found that mislocalization of a mutated capsid protein decreased viral RNA amplification. We propose that lipid droplets play multiple roles during the viral life cycle; they could sequester the viral capsid protein early during infection and provide a scaffold for genome encapsidation
Comparison of Three Commercially Available Dengue NS1 Antigen Capture Assays for Acute Diagnosis of Dengue in Brazil
Dengue is the one of the most prevalent arthropod-borne viral diseases in tropical regions of the world. Manifestations may vary from asymptomatic to potentially fatal complications. Laboratorial diagnosis is essential to diagnose dengue and differentiate it from other diseases. Dengue virus non-structural protein 1 (NS1) may be used as a marker of acute dengue virus infection. Our results, based in the comparison of three NS1 antigen capture assays available, have shown that this approach is reliable for the early diagnosis of dengue infections, especially in the first four days after the onset of the symptoms. A lower sensitivity was observed in DENV-3 cases. Serum positive by virus isolation were more often detected than those positive by RT-PCR by all three assays. Only the Plateliaβ’ NS1 test showed a higher sensitivity in confirming primary infections than secondary ones. In conclusion, NS1 antigen capture commercial kits are useful for diagnosis of acute primary and secondary dengue infections and, in endemic countries where secondary infections are expected to occur, may be used in combination with MAC-ELISA to increase the overall sensitivity of both tests
Intraspecies Transmission of BASE Induces Clinical Dullness and Amyotrophic Changes
The disease phenotype of bovine spongiform encephalopathy (BSE) and the molecular/ biological properties of its prion strain, including the host range and the characteristics of BSE-related disorders, have been extensively studied since its discovery in 1986. In recent years, systematic testing of the brains of cattle coming to slaughter resulted in the identification of at least two atypical forms of BSE. These emerging disorders are characterized by novel conformers of the bovine pathological prion protein (PrPTSE), named high-type (BSE-H) and low-type (BSE-L). We recently reported two Italian atypical cases with a PrPTSE type identical to BSE-L, pathologically characterized by PrP amyloid plaques and known as bovine amyloidotic spongiform encephalopathy (BASE). Several lines of evidence suggest that BASE is highly virulent and easily transmissible to a wide host range. Experimental transmission to transgenic mice overexpressing bovine PrP (Tgbov XV) suggested that BASE is caused by a prion strain distinct from the BSE isolate. In the present study, we experimentally infected Friesian and Alpine brown cattle with Italian BSE and BASE isolates via the intracerebral route. BASE-infected cattle developed amyotrophic changes accompanied by mental dullness. The molecular and neuropathological profiles, including PrP deposition pattern, closely matched those observed in the original cases. This study provides clear evidence of BASE as a distinct prion isolate and discloses a novel disease phenotype in cattle
Trans-Dominant Inhibition of Prion Propagation In Vitro Is Not Mediated by an Accessory Cofactor
Previous studies identified prion protein (PrP) mutants which act as dominant negative inhibitors of prion formation through a mechanism hypothesized to require an unidentified species-specific cofactor termed protein X. To study the mechanism of dominant negative inhibition in vitro, we used recombinant PrPC molecules expressed in Chinese hamster ovary cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. Bioassays confirmed that the products of these reactions are infectious. Using this system, we find that: (1) trans-dominant inhibition can be dissociated from conversion activity, (2) dominant-negative inhibition of prion formation can be reconstituted in vitro using only purified substrates, even when wild type (WT) PrPC is pre-incubated with poly(A) RNA and PrPSc template, and (3) Q172R is the only hamster PrP mutant tested that fails to convert into PrPSc and that can dominantly inhibit conversion of WT PrP at sub-stoichiometric levels. These results refute the hypothesis that protein X is required to mediate dominant inhibition of prion propagation, and suggest that PrP molecules compete for binding to a nascent seeding site on newly formed PrPSc molecules, most likely through an epitope containing residue 172
Rapid End-Point Quantitation of Prion Seeding Activity with Sensitivity Comparable to Bioassays
A major problem for the effective diagnosis and management of prion diseases is the lack of rapid high-throughput assays to measure low levels of prions. Such measurements have typically required prolonged bioassays in animals. Highly sensitive, but generally non-quantitative, prion detection methods have been developed based on prions' ability to seed the conversion of normally soluble protease-sensitive forms of prion protein to protease-resistant and/or amyloid fibrillar forms. Here we describe an approach for estimating the relative amount of prions using a new prion seeding assay called real-time quaking induced conversion assay (RT-QuIC). The underlying reaction blends aspects of the previously described quaking-induced conversion (QuIC) and amyloid seeding assay (ASA) methods and involves prion-seeded conversion of the alpha helix-rich form of bacterially expressed recombinant PrPC to a beta sheet-rich amyloid fibrillar form. The RT-QuIC is as sensitive as the animal bioassay, but can be accomplished in 2 days or less. Analogous to end-point dilution animal bioassays, this approach involves testing of serial dilutions of samples and statistically estimating the seeding dose (SD) giving positive responses in 50% of replicate reactions (SD50). Brain tissue from 263K scrapie-affected hamsters gave SD50 values of 1011-1012/g, making the RT-QuIC similar in sensitivity to end-point dilution bioassays. Analysis of bioassay-positive nasal lavages from hamsters affected with transmissible mink encephalopathy gave SD50 values of 103.5β105.7/ml, showing that nasal cavities release substantial prion infectivity that can be rapidly detected. Cerebral spinal fluid from 263K scrapie-affected hamsters contained prion SD50 values of 102.0β102.9/ml. RT-QuIC assay also discriminated deer chronic wasting disease and sheep scrapie brain samples from normal control samples. In principle, end-point dilution quantitation can be applied to many types of prion and amyloid seeding assays. End point dilution RT-QuIC provides a sensitive, rapid, quantitative, and high throughput assay of prion seeding activity
Plasmacytoid Dendritic Cells Sequester High Prion Titres at Early Stages of Prion Infection
In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles
- β¦