9 research outputs found

    The LUX-ZEPLIN (LZ) Experiment

    Get PDF
    We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements

    Imperfect optics may be the eye’s defence against chromatic blur

    No full text
    3 pages, 4 figures.-- PMID: 12000960 [PubMed].-- Supplementary Information accompanies the paper on Nature’s website.The optics of the eye cause different wavelengths of light to be differentially focused at the retina. This phenomenon is due to longitudinal chromatic aberration, a wavelength-dependent change in refractive power. Retinal image quality may consequently vary for the different classes of cone photoreceptors, cells tuned to absorb bands of different wavelengths. For instance, it has been assumed that when the eye is focused for mid-spectral wavelengths near the peak sensitivities of long- (L) and middle- (M) wavelength-sensitive cones, short-wavelength (bluish) light is so blurred that it cannot contribute to and may even impair spatial vision. These optical effects have been proposed to explain the function of the macular pigment, which selectively absorbs short-wavelength light, and the sparsity of short-wavelength-sensitive (S) cones. However, such explanations have ignored the effect of monochromatic wave aberrations present in real eyes. Here we show that, when these effects are taken into account, short wavelengths are not as blurred as previously thought, that the potential image quality for S cones is comparable to that for L and M cones, and that macular pigment has no significant function in improving the retinal image.Peer reviewe

    First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

    Get PDF
    The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60 live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross sections for WIMP masses above 9  GeV/c^{2}. The most stringent limit is set for spin-independent scattering at 36  GeV/c^{2}, rejecting cross sections above 9.2×10^{-48}  cm at the 90% confidence level
    corecore