510 research outputs found

    Maintenance Requirements of Implant Supported Fixed Prostheses Opposed by Either Implant Supported Fixed Prostheses or Natural Teeth: 5 Years Results

    Get PDF
    AIM: To compare the maintenance requirements of implant supported fixed prostheses opposed by implant supported fixed prostheses natural teeth or complete dentures. METHOD: The maintenance requirements were obtained by examining the dental records of 15 people, of whom 6 were edentulous in both arches and 9 edentulous in one arch. The results were compared to those obtained from 22 edentulous people in whom implants had been used in the mandible (control group). All the patients were treated with Nobel Biocare implants using standard implant and prosthetic protocols. RESULTS: The main maintenance requirement was the need to repair part of the superstructure. The artificial teeth and the acrylic resin had to be repaired on 44 occasions in the group with implants in both jaws and 14 occasions in the group with implants opposed by natural teeth. This compared with 2 occasions in the control group. Similarly the group with implants in both jaws were more likely to fracture the gold alloy framework, an event which occurred on 6 occasions. The Kruskal- Wallis one way analysis of variance on ranks was used to identify significant differences and Dunn’s method of All Pairwise Multiple Comparison Procedures was used to distinguish which group differed from the other. The group with implants in both jaws was significantly different to the other two groups in relation to the higher incidence of fracture of the teeth and acrylic resin superstructure (p<0.0001) and fracture of the gold alloy framework (p = 0.0002). CONCLUSION: The maintenance requirements of implant supported fixed prostheses opposed by implant supported fixed prostheses are much greater than when opposed by natural teeth or complete dentures

    Modelling the impact of calorie‐reduction interventions on population prevalence and inequalities in childhood obesity in the Southampton Women’s Survey

    Get PDF
    Background: In the United Kingdom, rates of childhood obesity are high and inequalities in obesity have widened in recent years. Children with obesity face heightened risks of living with obesity as adults and suffering from associated morbidities. Addressing population prevalence and inequalities in childhood obesity is a key priority for public health policymakers in the United Kingdom and elsewhere. Where randomized controlled trials are not possible, potential policy actions can be simulated using causal modeling techniques. Objectives: Using data from the Southampton Women's Survey (SWS), a cohort with high quality dietary and lifestyle data, the potential impact of policy-relevant calorie-reduction interventions on population prevalence and inequalities of childhood obesity was investigated. Methods: Predicted probabilities of obesity (using UK90 cut-offs) at age 6–7 years were estimated from logistic marginal structural models adjusting for observed calorie consumption at age 3 years (using food diaries) and confounding. A series of policy-relevant intervention scenarios were modeled to simulate reductions in energy intake (differing in effectiveness, the targeting mechanisms, and level of uptake). Results: At age 6–7 years, 8.3% of children were living with obesity, after accounting for observed energy intake and confounding. A universal intervention to lower median energy intake to the estimated average requirement (a 13% decrease), with an uptake of 75%, reduced obesity prevalence by 1% but relative and absolute inequalities remained broadly unchanged. Conclusions: Simulated interventions substantially reduced population prevalence of obesity, which may be useful in informing policymakers

    Assessing the effectiveness of front of pack labels: Findings from an online randomised-controlled experiment in a representative British sample

    Get PDF
    Front of pack food labels (FOPLs) provide accessible nutritional information to guide consumer choice. Using an online experiment with a large representative British sample, we aimed to examine whether FOPLs improve participants’ ability to identify the healthiness of foods and drinks. The primary aim was to compare ability to rank between FOPL groups and a no label control. Adults (≥18 years), recruited from the NatCen panel, were randomised to one of five experimental groups (Multiple Traffic Light, MTL; Nutri-Score, N-S; Warning Label, WL; Positive Choice tick, PC; no label control). Stratification variables were year of recruitment to panel, sex, age, government office region, and household income. Packaging images were created for three versions, varying in healthiness, of six food and drink products (pizza, drinks, cakes, crisps, yoghurts, breakfast cereals). Participants were asked to rank the three product images in order of healthiness. Ranking was completed on a single occasion and comprised a baseline measure (with no FOPL), and a follow-up measure including the FOPL as per each participant’s experimental group. The primary outcome was the ability to accurately rank product healthiness (all products ranked correctly vs. any incorrect). In 2020, 4504 participants had complete data and were included in the analysis. The probability of correct ranking at follow-up, and improving between baseline and follow-up, was significantly greater across all products for the N-S, MTL and WL groups, compared to control. This was seen for only some of the products for the PC group. The largest effects were seen for N-S, followed by MTL. These analyses were adjusted for stratification variables, ethnicity, education, household composition, food shopping responsibility, and current FOPL use. Exploratory analyses showed a tendency for participants with higher compared to lower education to rank products more accurately. Conclusions: All FOPLs were effective at improving participants’ ability to correctly rank products according to healthiness in this large representative British sample, with the largest effects seen for N-S, followed by MTL

    Propagation of activity through the cortical hierarchy and perception are determined by neural variability

    Get PDF
    Brains are composed of anatomically and functionally distinct regions performing specialized tasks, but regions do not operate in isolation. Orchestration of complex behaviors requires communication between brain regions, but how neural dynamics are organized to facilitate reliable transmission is not well understood. Here we studied this process directly by generating neural activity that propagates between brain regions and drives behavior, assessing how neural populations in sensory cortex cooperate to transmit information. We achieved this by imaging two densely interconnected regions—the primary and secondary somatosensory cortex (S1 and S2)—in mice while performing two-photon photostimulation of S1 neurons and assigning behavioral salience to the photostimulation. We found that the probability of perception is determined not only by the strength of the photostimulation but also by the variability of S1 neural activity. Therefore, maximizing the signal-to-noise ratio of the stimulus representation in cortex relative to the noise or variability is critical to facilitate activity propagation and perception

    Evaluation of the influence of kyphosis and scoliosis on intervertebral disc extrusion in French bulldogs

    Get PDF
    Although thoracic vertebral malformations with kyphosis and scoliosis are often considered incidental findings on diagnostic imaging studies of screw-tailed brachycephalic breeds, they have been suggested to interfere with spinal biomechanics and intervertebral disc degeneration. It is however unknown if an abnormal spinal curvature also predisposes dogs to develop clinically relevant intervertebral disc herniations. The aim of this study was to evaluate if the occurrence of thoracic vertebral malformations, kyphosis or scoliosis would be associated with a higher prevalence of cervical or thoracolumbar intervertebral disc extrusion in French bulldogs

    Regulation of cell cycle transition and induction of apoptosis in HL-60 leukemia cells by lipoic acid: role in cancer prevention and therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lipoic acid (LA), a potent antioxidant, has been used as a dietary supplement to prevent and treat many diseases, including stroke, diabetes, neurodegenerative and hepatic disorders. Recently, potent anti-tumorigenic effects induced by LA were also reported and evident as assayed by suppression of cell proliferation and induction of apoptosis in malignant cells. However, the mechanism by which LA elicits its chemopreventive effects remains unclear.</p> <p>Methods and Results</p> <p>Herein, we investigated whether LA elicits its anti-tumor effects by inducing cell cycle arrest and cell death in human promyelocytic HL-60 cells. The results showed that LA inhibits both cell growth and viability in a time- and dose-dependent manner. Disruption of the G<sub>1</sub>/S and G<sub>2</sub>/M phases of cell cycle progression accompanied by the induction of apoptosis was also observed following LA treatment. Cell cycle arrest by LA was correlated with dose-dependent down regulation of Rb phosphorylation, likely via suppression of E2F-dependent cell cycle progression with an accompanying inhibition of cyclin E/cdk2 and cyclin B1/cdk1 levels. Evidence supporting the induction of apoptosis by LA was based on the appearance of sub-G<sub>1 </sub>peak in flow cytometry analysis and the cleavage of poly(ADP-ribose) polymerase (PARP) from its native 112-kDa form to the 89-kDa truncated product in immunoblot assays. Apoptosis elicited by LA was preceded by diminution in the expression of anti-apoptotic protein bcl-2 and increased expression of apoptogenic protein bax, and also the release and translocation of apoptosis inducing factor AIF and cytochrome c from the mitochondria to the nucleus, without altering the subcellular distribution of the caspases.</p> <p>Conclusion</p> <p>This study provides evidence that LA induces multiple cell cycle checkpoint arrest and caspase-independent cell death in HL-60 cells, in support of its efficacious potential as a chemopreventive agent.</p

    Evolution of Taxis Responses in Virtual Bacteria: Non-Adaptive Dynamics

    Get PDF
    Bacteria are able to sense and respond to a variety of external stimuli, with responses that vary from stimuli to stimuli and from species to species. The best-understood is chemotaxis in the model organism Escherichia coli, where the dynamics and the structure of the underlying pathway are well characterised. It is not clear, however, how well this detailed knowledge applies to mechanisms mediating responses to other stimuli or to pathways in other species. Furthermore, there is increasing experimental evidence that bacteria integrate responses from different stimuli to generate a coherent taxis response. We currently lack a full understanding of the different pathway structures and dynamics and how this integration is achieved. In order to explore different pathway structures and dynamics that can underlie taxis responses in bacteria, we perform a computational simulation of the evolution of taxis. This approach starts with a population of virtual bacteria that move in a virtual environment based on the dynamics of the simple biochemical pathways they harbour. As mutations lead to changes in pathway structure and dynamics, bacteria better able to localise with favourable conditions gain a selective advantage. We find that a certain dynamics evolves consistently under different model assumptions and environments. These dynamics, which we call non-adaptive dynamics, directly couple tumbling probability of the cell to increasing stimuli. Dynamics that are adaptive under a wide range of conditions, as seen in the chemotaxis pathway of E. coli, do not evolve in these evolutionary simulations. However, we find that stimulus scarcity and fluctuations during evolution results in complex pathway dynamics that result both in adaptive and non-adaptive dynamics depending on basal stimuli levels. Further analyses of evolved pathway structures show that effective taxis dynamics can be mediated with as few as two components. The non-adaptive dynamics mediating taxis responses provide an explanation for experimental observations made in mutant strains of E. coli and in wild-type Rhodobacter sphaeroides that could not be explained with standard models. We speculate that such dynamics exist in other bacteria as well and play a role linking the metabolic state of the cell and the taxis response. The simplicity of mechanisms mediating such dynamics makes them a candidate precursor of more complex taxis responses involving adaptation. This study suggests a strong link between stimulus conditions during evolution and evolved pathway dynamics. When evolution was simulated under conditions of scarce and fluctuating stimulus conditions, the evolved pathway contained features of both adaptive and non-adaptive dynamics, suggesting that these two types of dynamics can have different advantages under distinct environmental circumstances

    A Minimal Model of Metabolism Based Chemotaxis

    Get PDF
    Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis

    International Veterinary Epilepsy Task Force recommendations for systematic sampling and processing of brains from epileptic dogs and cats

    Get PDF
    Traditionally, histological investigations of the epileptic brain are required to identify epileptogenic brain lesions, to evaluate the impact of seizure activity, to search for mechanisms of drug-resistance and to look for comorbidities. For many instances, however, neuropathological studies fail to add substantial data on patients with complete clinical work-up. This may be due to sparse training in epilepsy pathology and or due to lack of neuropathological guidelines for companion animals. The protocols introduced herein shall facilitate systematic sampling and processing of epileptic brains and therefore increase the efficacy, reliability and reproducibility of morphological studies in animals suffering from seizures. Brain dissection protocols of two neuropathological centres with research focus in epilepsy have been optimised with regards to their diagnostic yield and accuracy, their practicability and their feasibility concerning clinical research requirements. The recommended guidelines allow for easy, standardised and ubiquitous collection of brain regions, relevant for seizure generation. Tissues harvested the prescribed way will increase the diagnostic efficacy and provide reliable material for scientific investigations
    corecore