1,313 research outputs found

    Black-hole dynamics in BHT massive gravity

    Full text link
    Using an exact Vaidya-type null-dust solution, we study the area and entropy laws for dynamical black holes defined by a future outer trapping horizon in (2+1)-dimensional Bergshoeff-Hohm-Townsend (BHT) massive gravity. We consider the theory admitting a degenerate (anti-)de Sitter vacuum and pure BHT gravity. It is shown that, while the area of a black hole decreases by the injection of a null dust with positive energy density in several cases, the Wald-Kodama dynamical entropy always increases.Comment: 7 pages, 1 figur

    Signatures of granular microstructure in dense shear flows

    Full text link
    Granular materials react to shear stresses differently than do ordinary fluids. Rather than deforming uniformly, materials such as dry sand or cohesionless powders develop shear bands: narrow zones containing large relative particle motion leaving adjacent regions essentially rigid[1,2,3,4,5]. Since shear bands mark areas of flow, material failure and energy dissipation, they play a crucial role for many industrial, civil engineering and geophysical processes[6]. They also appear in related contexts, such as in lubricating fluids confined to ultra-thin molecular layers[7]. Detailed information on motion within a shear band in a three-dimensional geometry, including the degree of particle rotation and inter-particle slip, is lacking. Similarly, only little is known about how properties of the individual grains - their microstructure - affect movement in densely packed material[5]. Combining magnetic resonance imaging, x-ray tomography, and high-speed video particle tracking, we obtain the local steady-state particle velocity, rotation and packing density for shear flow in a three-dimensional Couette geometry. We find that key characteristics of the granular microstructure determine the shape of the velocity profile.Comment: 5 pages, incl. 4 figure

    The proangiogenic capacity of polymorphonuclear neutrophils delineated by microarray technique and by measurement of neovascularization in wounded skin of CD18-deficient mice

    Get PDF
    Growing evidence supports the concept that polymorphonuclear neutrophils (PMN) are critically involved in inflammation-mediated angiogenesis which is important for wound healing and repair. We employed an oligonucleotide microarray technique to gain further insight into the molecular mechanisms underlying the proangiogenic potential of human PMN. In addition to 18 known angiogenesis-relevant genes, we detected the expression of 10 novel genes, namely midkine, erb-B2, ets-1, transforming growth factor receptor-beta(2) and -beta(3), thrombospondin, tissue inhibitor of metalloproteinase 2, ephrin A2, ephrin B2 and restin in human PMN freshly isolated from the circulation. Gene expression was confi rmed by the RT-PCR technique. In vivo evidence for the role of PMN in neovascularization was provided by studying neovascularization in a skin model of wound healing using CD18-deficient mice which lack PMN infi ltration to sites of lesion. In CD18-deficient animals, neo- vascularization was found to be signifi cantly compromised when compared with wild- type control animals which showed profound neovascularization within the granulation tissue during the wound healing process. Thus, PMN infiltration seems to facilitate inflammation mediated angiogenesis which may be a consequence of the broad spectrum of proangiogenic factors expressed by these cells. Copyright (c) 2006 S. Karger AG, Basel

    Post-radiation dedifferentiation of meningioma into osteosarcoma.

    Get PDF
    BACKGROUND: A number of osteoblastic meningiomas, primary osteosarcomas of the meninges, and post-radiation osteosarcomas of the head have been reported. However, postradiation dedifferentiation of meningioma into osteosarcoma has not been reported previously. CASE PRESENTATION: In 1987 a caucasian man, then 38 years old, presented with a pituitary macroadenoma. He underwent a subtotal resection of the tumor and did well until 1990 when a recurrent tumor was diagnosed. This was treated with subtotal resection of the tumor, followed by radiation therapy for six weeks to a total of 54 Gy. He was considered "disease-free" for nearly ten years. However, most recently in July 2000, he presented with a visual field deficit due to a second recurrence of his pituitary macroadenoma, now with suprasellar extension. At this time, as an incidental finding, a mass attached to the dura was noted in the left parietal hemisphere. This dura–based mass had grown rapidly by January 2001 and was excised. It showed histological, immunohistochemical, and electron microscopic features of malignant meningioma and osteosarcoma with a sharp demarcation between the two components. CONCLUSIONS: We report a rare case of a radiation induced dedifferentiation of meningioma into osteosarcoma, which has not been reported previously

    Novel application of low pH-dependent fluorescent dyes to examine colitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endoscopy capable of fluorescence observation provides histological information on gastrointestinal lesions. We explored the novel application of low pH-dependent fluorescent dyes for fluorescence observation of crypt structure and inflammatory cell infiltration in the colon.</p> <p>Methods</p> <p>Low pH-dependent fluorescent dyes were applied to the colonic mucosa of normal mice for observation under fluorescence stereomicroscopy system. We also examined mouse models of colitis, which were induced by trinitrobenzenesulfonic acid, dextran sulfate sodium or interleukin-10 deficiency.</p> <p>Results</p> <p>Topical application of low pH-dependent fluorescent dyes revealed crypts as ring-shaped fluorescent stains by visualizing the mucin granules of goblet cells. Because of the minimal fluorescence intensity of the low pH-dependent fluorescent dyes in phosphate-buffered saline, it was not necessary to wash the mucosa before the fluorescence observation. 4-Nitro-7-piperazino-2,1,3-benzoxadiazole (NBD-PZ) was quicker to achieve complete staining (three minutes) than LysoSensor Green DND-153 and DND-189 (20 minutes). In each type of colitis, NBD-PZ revealed the destruction of the crypts as the disappearance of the ring-shaped fluorescent stains and the infiltration of inflammatory cells as the aggregation of punctate fluorescent stains through visualization of lysosomes.</p> <p>Conclusions</p> <p>Low pH-dependent fluorescent dyes, especially NBD-PZ, are suitable for topical application to the colonic mucosa and have characteristics that allow for the histological examination of colitis.</p

    The Structure of n-Point One-Loop Open Superstring Amplitudes

    Get PDF
    In this article we present the worldsheet integrand for one-loop amplitudes in maximally supersymmetric superstring theory involving any number n of massless open string states. The polarization dependence is organized into the same BRST invariant kinematic combinations which also govern the leading string correction to tree level amplitudes. The dimensions of the bases for both the kinematics and the associated worldsheet integrals is found to be the unsigned Stirling number S_3^{n-1} of first kind. We explain why the same combinatorial structures govern on the one hand finite one-loop amplitudes of equal helicity states in pure Yang Mills theory and on the other hand the color tensors at quadratic alpha prime order of the color dressed tree amplitude.Comment: 75 pp, 8 figs, harvmac TeX, v2: published versio

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    Electrocardiographic Criteria for Left Ventricular Hypertrophy in Children

    Get PDF
    Previous studies to determine the sensitivity of the electrocardiogram (ECG) for left ventricular hypertrophy (LVH) in children had their imperfections: they were not done on an unselected hospital population, several criteria used in adults were not applied to children, and obsolete limits of normal for the ECG parameters were used. Furthermore, left ventricular mass (LVM) was taken as the reference standard for LVH, with no regard for other clinical evidence. The study population consisted of 832 children from whom a 12-lead ECG and an M-mode echocardiogram were taken on the same day. The validity of the ECG criteria was judged on the basis of an abnormal LVM index, either alone or in combination with other clinical evidence. The ECG criteria were based on recently established age-dependent normal limits. At 95% specificity, the ECG criteria have low sensitivities (<25%) when an elevated LVM index is taken as the reference for LVH. When clinical evidence is also taken into account, the sensitivity improved considerably (<43%). Sensitivities could be further improved when ECG parameters were combined. The sensitivity of the pediatric ECG in detecting LVH is low but depends strongly on the definition of the reference used for validation

    Editing site analysis in a gymnosperm mitochondrial genome reveals similarities with angiosperm mitochondrial genomes

    Get PDF
    Sequence analysis of organelle genomes and comprehensive analysis of C-to-U editing sites from flowering and non-flowering plants have provided extensive sequence information from diverse taxa. This study includes the first comprehensive analysis of RNA editing sites from a gymnosperm mitochondrial genome, and utilizes informatics analyses to determine conserved features in the RNA sequence context around editing sites. We have identified 565 editing sites in 21 full-length and 4 partial cDNAs of the 39 protein-coding genes identified from the mitochondrial genome of Cycas taitungensis. The information profiles and RNA sequence context of C-to-U editing sites in the Cycas genome exhibit similarity in the immediate flanking nucleotides. Relative entropy analyses indicate that similar regions in the 5′ flanking 20 nucleotides have information content compared to angiosperm mitochondrial genomes. These results suggest that evolutionary constraints exist on the nucleotide sequences immediately adjacent to C-to-U editing sites, and similar regions are utilized in editing site recognition

    Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis

    Get PDF
    Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions
    corecore