4,023 research outputs found

    Lysis mediated by T cells and restricted by H-2 antigen of target cells infected with vaccinia virus

    Get PDF
    VARIOUS virus infections lead to the formation of cytotoxic lymphocytes (CL), which are capable of killing virus-infected target cells1−4. Specific lysis of target cells infected with 51Cr-labelled vaccinia virus could be observed when investigating the cell-mediated cytotoxic reaction to vaccinia virus5; the CL could be characterised as a T cell. The sensitised lymphocytes from C3H mice could only kill syngeneic L929 cells infected with vaccinia virus, whereas lysis by sensitised lymphocytes derived from DBA/2 mice was restricted to the syngeneic infected mastocytoma P815X2 cells. In the lymphocytic choriomeningitis infection the target cell lysis was shown to be restricted by H-2 antigen6. We report here experiments with primary fibroblasts of the mouse strains C3H, DBA/2 and the (C3H DBA/2)F1 generation were designed to affirm that the effector phase of virus-specific lysis of target cells mediated by T cells is restricted by H-2 antigen even in the vaccinia virus infection. Further experiments with H-2 alloantisera were performed to indicate the close local relationship between H-2 antigens and viral surface antigens

    Altered serological and cellular reactivity to H-2 antigens after target cell infection with vaccinia virus

    Get PDF
    MICE generate cytotoxic T lymphocytes (CTL) which are able to lyse virus infected target cells in vitro after infection with lymphocytic choriomeningitis virus (LCMV) and pox-viruses1−3. CTL kill syngeneic and semiallogenic infected cells but not allogenic infected targets. Target cell lysis in these systems seems to be restricted by H-2 antigens, especially by the K or D end of the major histocompatibility complex (MHC). In experiments where virus specific sensitised lymphocytes kill virus infected allogenic target cells4 the effector lymphocytes have not been characterised exactly. Recent investigations suggest that the active cell in this assay, at least in the measles infection, is a non-thymus derived cell (H. Kreth, personal communication). An H-2 restriction of cell mediated cytolysis (CMC) to trinitrophenol (TNP)-modified lymphocytes has also been described5. Zinkernagel and Doherty6 postulated that the CTL is directed against syngeneic H-2 antigens and viral antigens and they suggested an alteration of H-2 induced by the LCMV infection. Earlier7 we found a close topological relationship between H-2 antigens and the target antigen(s) responsible for CMC in the vaccinia system. Here we report experiments which were carried out to prove alteration of H-2 after infection of L-929 fibroblasts with vaccinia virus

    Simulation of an Optional Strategy in the Prisoner's Dilemma in Spatial and Non-spatial Environments

    Full text link
    This paper presents research comparing the effects of different environments on the outcome of an extended Prisoner's Dilemma, in which agents have the option to abstain from playing the game. We consider three different pure strategies: cooperation, defection and abstinence. We adopt an evolutionary game theoretic approach and consider two different environments: the first which imposes no spatial constraints and the second in which agents are placed on a lattice grid. We analyse the performance of the three strategies as we vary the loner's payoff in both structured and unstructured environments. Furthermore we also present the results of simulations which identify scenarios in which cooperative clusters of agents emerge and persist in both environments.Comment: 12 pages, 8 figures. International Conference on the Simulation of Adaptive Behavio

    The role of gaze and road edge information during high speed locomotion.

    Get PDF
    Robust control of skilled actions requires the flexible combination of multiple sources of information. Here we examined the role of gaze during high-speed locomotor steering and in particular the role of feedback from the visible road edges. Participants were required to maintain one of three lateral positions on the road when one or both edges were degraded (either by fading or removing them). Steering became increasingly impaired as road edge information was degraded, with gaze being predominantly directed towards the required road position. When either of the road edges were removed, we observed systematic shifts in steering and gaze direction dependent upon both the required road position and the visible edge. A second experiment required fixation on the road center or beyond the road edges. The results showed that the direction of gaze led to predictable steering biases, which increased as road edge information became degraded. A new steering model demonstrates that the direction of gaze and both road edges influence steering in a manner consistent with the flexible weighted combination of near road feedback information and prospective gaze information

    What traits are carried on mobile genetic elements, and why?

    Get PDF
    Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes

    The Microevolution and Epidemiology of Staphylococcus aureus Colonization during Atopic Eczema Disease Flare.

    Get PDF
    Staphylococcus aureus is an opportunistic pathogen and variable component of the human microbiota. A characteristic of atopic eczema (AE) is colonization by S. aureus, with exacerbations associated with an increased bacterial burden of the organism. Despite this, the origins and genetic diversity of S. aureus colonizing individual patients during AE disease flares is poorly understood. To examine the microevolution of S. aureus colonization, we deep sequenced S. aureus populations from nine children with moderate to severe AE and 18 non-atopic children asymptomatically carrying S. aureus nasally. Colonization by clonal S. aureus populations was observed in both AE patients and control participants, with all but one of the individuals carrying colonies belonging to a single sequence type. Phylogenetic analysis showed that disease flares were associated with the clonal expansion of the S. aureus population, occurring over a period of weeks to months. There was a significant difference in the genetic backgrounds of S. aureus colonizing AE cases versus controls (Fisher exact test, P = 0.03). Examination of intra-host genetic heterogeneity of the colonizing S. aureus populations identified evidence of within-host selection in the AE patients, with AE variants being potentially selectively advantageous for intracellular persistence and treatment resistance.CPH was supported by Wellcome Trust (grant number 104241/z/14/z). MTGH, KAP, and KO were supported by the Scottish Infection Research Network and Chief Scientist Office through the Scottish Healthcare Associated Infection Prevention Institute consortium funding (CSO reference: SIRN10). Bioinformatics and computational biology analyses were supported by the University of St Andrews Bioinformatics Unit that is funded by a Wellcome Trust ISSF award (grant 097831/Z/11/Z). JP and MTGH were supported by Wellcome Trust grant 098051. AEM is supported by Biotechnology and Biological Sciences Research Council grant BB/M014088/1. SJB is supported by a Wellcome Trust Senior Research Fellowship in Clinical Science (106865/Z/15/Z)

    Pathophysiology of acute experimental pancreatitis: Lessons from genetically engineered animal models and new molecular approaches

    Get PDF
    The incidence of acute pancreatitis is growing and worldwide population-based studies report a doubling or tripling since the 1970s. 25% of acute pancreatitis are severe and associated with histological changes of necrotizing pancreatitis. There is still no specific medical treatment for acute pancreatitis. The average mortality resides around 10%. In order to develop new specific medical treatment strategies for acute pancreatitis, a better understanding of the pathophysiology during the onset of acute pancreatitis is necessary. Since it is difficult to study the early acinar events in human pancreatitis, several animal models of acute pancreatitis have been developed. By this, it is hoped that clues into human pathophysiology become possible. In the last decade, while employing molecular biology techniques, a major progress has been made. The genome of the mouse was recently sequenced. Various strategies are possible to prove a causal effect of a single gene or protein, using either gain-of-function (i.e., overexpression of the protein of interest) or loss-of-function studies (i.e., genetic deletion of the gene of interest). The availability of transgenic mouse models and gene deletion studies has clearly increased our knowledge about the pathophysiology of acute pancreatitis and enables us to study and confirm in vitro findings in animal models. In addition, transgenic models with specific genetic deletion or overexpression of genes help in understanding the role of one specific protein in a cascade of inflammatory processes such as pancreatitis where different proteins interact and co-react. This review summarizes the recent progress in this field. Copyright (c) 2005 S. Karger AG, Basel

    Time esophageal pH < 4 overestimates the prevalence of pathologic esophageal reflux in subjects with gastroesophageal reflux disease treated with proton pump inhibitors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A Stanford University study reported that in asymptomatic GERD patients who were being treated with a proton pump inhibitor (PPI), 50% had pathologic esophageal acid exposure.</p> <p>Aim</p> <p>We considered the possibility that the high prevalence of pathologic esophageal reflux might simply have resulted from calculating acidity as time pH < 4.</p> <p>Methods</p> <p>We calculated integrated acidity and time pH < 4 from the 49 recordings of 24-hour gastric and esophageal pH from the Stanford study as well as from another study of 57 GERD subjects, 26 of whom were treated for 8 days with 20 mg omeprazole or 20 mg rabeprazole in a 2-way crossover fashion.</p> <p>Results</p> <p>The prevalence of pathologic 24-hour esophageal reflux in both studies was significantly higher when measured as time pH < 4 than when measured as integrated acidity. This difference was entirely attributable to a difference between the two measures during the nocturnal period. Nocturnal gastric acid breakthrough was not a useful predictor of pathologic nocturnal esophageal reflux.</p> <p>Conclusion</p> <p>In GERD subjects treated with a PPI, measuring time esophageal pH < 4 will significantly overestimate the prevalence of pathologic esophageal acid exposure over 24 hours and during the nocturnal period.</p

    Endometrial stromal cells of women with recurrent miscarriage fail to discriminate between high- and low-quality human embryos

    Get PDF
    Background The aetiology of recurrent miscarriage (RM) remains largely unexplained. Women with RM have a shorter time to pregnancy interval than normally fertile women, which may be due to more frequent implantation of non-viable embryos. We hypothesized that human endometrial stromal cells (H-EnSCs) of women with RM discriminate less effectively between high-and low-quality human embryos and migrate more readily towards trophoblast spheroids than H-EnSCs of normally fertile women. Methodology/Principal Findings Monolayers of decidualized H-EnSCs were generated from endometrial biopsies of 6 women with RM and 6 fertile controls. Cell-free migration zones were created and the effect of the presence of a high-quality (day 5 blastocyst, n = 13), a low-quality (day 5 blastocyst with three pronuclei or underdeveloped embryo, n = 12) or AC-1M88 trophoblast cell line spheroid on H-ESC migratory activity was analyzed after 18 hours. In the absence of a spheroid or embryo, migration of H-EnSCs from fertile or RM women was similar. In the presence of a low-quality embryo in the zone, the migration of H-EnSCs of control women was inhibited compared to the basal migration in the absence of an embryo (P<0.05) and compared to the migration in the presence of high-quality embryo (p<0.01). Interestingly, the migratory response H-EnSCs of women with RM did not differ between high- and low-quality embryos. Furthermore, in the presence of a spheroid their migration was enhanced compared to the H-EnSCs of controls (p<0.001). Conclusions H-EnSCs of fertile women discriminate between high- and low-quality embryos whereas H-EnSCs of women with RM fail to do so. H-EnSCs of RM women have a higher migratory response to trophoblast spheroids. Future studies will focus on the mechanisms by which low-quality embryos inhibit the migration of H-EnSCs and how this is deregulated in women with RM
    corecore