835 research outputs found
Surfactant status and respiratory outcome in premature infants receiving late surfactant treatment.
BACKGROUND:Many premature infants with respiratory failure are deficient in surfactant, but the relationship to occurrence of bronchopulmonary dysplasia (BPD) is uncertain. METHODS:Tracheal aspirates were collected from 209 treated and control infants enrolled at 7-14 days in the Trial of Late Surfactant. The content of phospholipid, surfactant protein B, and total protein were determined in large aggregate (active) surfactant. RESULTS:At 24 h, surfactant treatment transiently increased surfactant protein B content (70%, p < 0.01), but did not affect recovered airway surfactant or total protein/phospholipid. The level of recovered surfactant during dosing was directly associated with content of surfactant protein B (r = 0.50, p < 0.00001) and inversely related to total protein (r = 0.39, p < 0.0001). For all infants, occurrence of BPD was associated with lower levels of recovered large aggregate surfactant, higher protein content, and lower SP-B levels. Tracheal aspirates with lower amounts of recovered surfactant had an increased proportion of small vesicle (inactive) surfactant. CONCLUSIONS:We conclude that many intubated premature infants are deficient in active surfactant, in part due to increased intra-alveolar metabolism, low SP-B content, and protein inhibition, and that the severity of this deficit is predictive of BPD. Late surfactant treatment at the frequency used did not provide a sustained increase in airway surfactant
Chronic Granulomatous Disease; fundamental stages in our understanding of CGD
It has been 50 years since chronic granulomatous disease was first reported as a disease which fatally affected the ability of children to survive infections. Various milestone discoveries from the insufficient ability of patients' leucocytes to destroy microbial particles to the underlying genetic predispositions through which the disease is inherited have had important consequences. Longterm antibiotic prophylaxis has helped to fight infections associated with chronic granulomatous disease while the steady progress in bone marrow transplantation and the prospect of gene therapy are hailed as long awaited permanent treatment options. This review unearths the important findings by scientists that have led to our current understanding of the disease
Role of NADPH Oxidase versus Neutrophil Proteases in Antimicrobial Host Defense
NADPH oxidase is a crucial enzyme in mediating antimicrobial host defense and in regulating inflammation. Patients with chronic granulomatous disease, an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates (ROIs), suffer from life-threatening bacterial and fungal infections. The mechanisms by which NADPH oxidase mediate host defense are unclear. In addition to ROI generation, neutrophil NADPH oxidase activation is linked to the release of sequestered proteases that are posited to be critical effectors of host defense. To definitively determine the contribution of NADPH oxidase versus neutrophil serine proteases, we evaluated susceptibility to fungal and bacterial infection in mice with engineered disruptions of these pathways. NADPH oxidase-deficient mice (p47phox−/−) were highly susceptible to pulmonary infection with Aspergillus fumigatus. In contrast, double knockout neutrophil elastase (NE)−/−×cathepsin G (CG)−/− mice and lysosomal cysteine protease cathepsin C/dipeptidyl peptidase I (DPPI)-deficient mice that are defective in neutrophil serine protease activation demonstrated no impairment in antifungal host defense. In separate studies of systemic Burkholderia cepacia infection, uniform fatality occurred in p47phox−/− mice, whereas NE−/−×CG−/− mice cleared infection. Together, these results show a critical role for NADPH oxidase in antimicrobial host defense against A. fumigatus and B. cepacia, whereas the proteases we evaluated were dispensable. Our results indicate that NADPH oxidase dependent pathways separate from neutrophil serine protease activation are required for host defense against specific pathogens
A pilot study of a phenomenological model of adipogenesis in maturing adipocytes using Cahn–Hilliard theory
We consider the accumulation and formation of lipid droplets in an adipocyte cell. The process incorporates adipose nucleation (adipogenesis) and growth. At later stages, there will be merging of droplets and growth of larger droplets at the expense of the smaller droplets, which will essentially undergo lipolysis. The process is modeled by the use of the Cahn–Hilliard equation, which is mass-conserving and allows the formation of secondary phases in the context of spinodal decomposition. The volume of fluid (VOF) method is used to determine the total area that is occupied by the lipids in a given cross section. Further, we present an algorithm, applicable to all kinds of grids (structured or unstructured) in two spatial dimensions, to count the number of lipid droplets and the portion of the domain of computation that is occupied by the lipid droplets as a function of time during the process. The results are preliminary and are validated from a qualitative point using experiments carried out on cell cultures. It turns out that the Cahn–Hilliard theory can model many of the features during adipogenesis qualitatively
Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke
Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential
signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9(HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P =
1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes
Phagocytosis of Streptococcus pyogenes by all-trans retinoic acid-differentiated HL-60 cells: roles of azurophilic granules and NADPH oxidase.
BACKGROUND: New experimental approaches to the study of the neutrophil phagosome and bacterial killing prompted a reassessment of the usefulness of all-trans retinoic acid (ATRA)-differentiated HL-60 cells as a neutrophil model. HL-60 cells are special in that they possess azurophilic granules while lacking the specific granules with their associated oxidase components. The resulting inability to mount an effective intracellular respiratory burst makes these cells more dependent on other mechanisms when killing internalized bacteria. METHODOLOGY/PRINCIPAL FINDINGS: In this work phagocytosis and phagosome-related responses of ATRA-differentiated HL-60 cells were compared to those earlier described in human neutrophils. We show that intracellular survival of wild-type S. pyogenes bacteria in HL-60 cells is accompanied by inhibition of azurophilic granule-phagosome fusion. A mutant S. pyogenes bacterium, deficient in M-protein expression, is, on the other hand, rapidly killed in phagosomes that avidly fuse with azurophilic granules. CONCLUSIONS/SIGNIFICANCE: The current data extend our previous findings by showing that a system lacking in oxidase involvement also indicates a link between inhibition of azurophilic granule fusion and the intraphagosomal fate of S. pyogenes bacteria. We propose that differentiated HL-60 cells can be a useful tool to study certain aspects of neutrophil phagosome maturation, such as azurophilic granule fusion
Salmonella Transiently Reside in Luminal Neutrophils in the Inflamed Gut
Enteric pathogens need to grow efficiently in the gut lumen in order to cause disease and ensure transmission. The interior of the gut forms a complex environment comprising the mucosal surface area and the inner gut lumen with epithelial cell debris and food particles. Recruitment of neutrophils to the intestinal lumen is a hallmark of non-typhoidal Salmonella enterica infections in humans. Here, we analyzed the interaction of gut luminal neutrophils with S. enterica serovar Typhimurium (S. Tm) in a mouse colitis model.Upon S. Tm(wt) infection, neutrophils transmigrate across the mucosa into the intestinal lumen. We detected a majority of pathogens associated with luminal neutrophils 20 hours after infection. Neutrophils are viable and actively engulf S. Tm, as demonstrated by live microscopy. Using S. Tm mutant strains defective in tissue invasion we show that pathogens are mostly taken up in the gut lumen at the epithelial barrier by luminal neutrophils. In these luminal neutrophils, S. Tm induces expression of genes typically required for its intracellular lifestyle such as siderophore production iroBCDE and the Salmonella pathogenicity island 2 encoded type three secretion system (TTSS-2). This shows that S. Tm at least transiently survives and responds to engulfment by gut luminal neutrophils. Gentamicin protection experiments suggest that the life-span of luminal neutrophils is limited and that S. Tm is subsequently released into the gut lumen. This "fast cycling" through the intracellular compartment of gut luminal neutrophils would explain the high fraction of TTSS-2 and iroBCDE expressing intra- and extracellular bacteria in the lumen of the infected gut.
In conclusion, live neutrophils recruited during acute S. Tm colitis engulf pathogens in the gut lumen and may thus actively engage in shaping the environment of pathogens and commensals in the inflamed gut
Risk of venous thromboembolism after total hip and knee replacement in older adults with comorbidity and co-occurring comorbidities in the Nationwide Inpatient Sample (2003-2006)
<p>Abstract</p> <p>Background</p> <p>Venous thromboembolism is a common, fatal, and costly injury which complicates major surgery in older adults. The American College of Chest Physicians recommends high potency prophylaxis regimens for individuals undergoing total hip or knee replacement (THR or TKR), but surgeons are reluctant to prescribe them due to fear of excess bleeding. Identifying a high risk cohort such as older adults with comorbidities and co-occurring comorbidities who might benefit most from high potency prophylaxis would improve how we currently perform preoperative assessment.</p> <p>Methods</p> <p>Using the Nationwide Inpatient Sample, we identified older adults who underwent THR or TKR in the U.S. between 2003 and 2006. Our outcome was VTE, including any pulmonary embolus or deep venous thrombosis. We performed multivariate logistic regression analyses to assess the effects of comorbidities on VTE occurrence. Comorbidities under consideration included coronary artery disease, congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD), diabetes, and cerebrovascular disease. We also examined the impact of co-occurring comorbidities on VTE rates.</p> <p>Results</p> <p>CHF increased odds of VTE in both the THR cohort (OR = 3.08 95% CI 2.05-4.65) and TKR cohort (OR = 2.47 95% CI 1.95-3.14). COPD led to a 50% increase in odds in the TKR cohort (OR = 1.49 95% CI 1.31-1.70). The data did not support synergistic effect of co-occurring comorbidities with respect to VTE occurrence.</p> <p>Conclusions</p> <p>Older adults with CHF undergoing THR or TKR and with COPD undergoing TKR are at increased risk of VTE. If confirmed in other datasets, these older adults may benefit from higher potency prophylaxis.</p
- …