49 research outputs found

    Glatiramer Acetate Treatment Normalizes Deregulated microRNA Expression in Relapsing Remitting Multiple Sclerosis

    Get PDF
    The expression of selected microRNAs (miRNAs) known to be involved in the regulation of immune responses was analyzed in 74 patients with relapsing remitting multiple sclerosis (RRMS) and 32 healthy controls. Four miRNAs (miR-326, miR-155, miR-146a, miR-142-3p) were aberrantly expressed in peripheral blood mononuclear cells from RRMS patients compared to controls. Although expression of these selected miRNAs did not differ between treatment-naïve (n = 36) and interferon-beta treated RRMS patients (n = 18), expression of miR-146a and miR-142-3p was significantly lower in glatiramer acetate (GA) treated RRMS patients (n = 20) suggesting that GA, at least in part, restores the expression of deregulated miRNAs in MS

    A Variant of TNFR2-Fc Fusion Protein Exhibits Improved Efficacy in Treating Experimental Rheumatoid Arthritis

    Get PDF
    Etanercept, a TNF receptor 2-Fc fusion protein, is currently being used for the treatment of rheumatoid arthritis (RA). However, 25% to 38% of patients show no response which is suspected to be partially due to insufficient affinity of this protein to TNFα. By using computational protein design, we found that residue W89 and E92 of TNFR2 were critical for ligand binding. Among several mutants tested, W89Y/E92N displayed 1.49-fold higher neutralizing activity to TNFα, as compared to that of Etanercept. Surface plasmon resonance (SPR) based binding assay revealed that the equilibrium dissociation constant of W89Y/E92N to TNFα was 3.65-fold higher than that of Etanercept. In a rat model of collagen-induced arthritis (CIA), W89Y/E92N showed a significantly better ability than Etanercept in reducing paw swelling and improvement of arthritic joint histopathologically. These data demonstrate that W89Y/E92N is potentially a better candidate with improved efficacy in treating RA and other autoimmune diseases

    Anchored Design of Protein-Protein Interfaces

    Get PDF
    Few existing protein-protein interface design methods allow for extensive backbone rearrangements during the design process. There is also a dichotomy between redesign methods, which take advantage of the native interface, and de novo methods, which produce novel binders.Here, we propose a new method for designing novel protein reagents that combines advantages of redesign and de novo methods and allows for extensive backbone motion. This method requires a bound structure of a target and one of its natural binding partners. A key interaction in this interface, the anchor, is computationally grafted out of the partner and into a surface loop on the design scaffold. The design scaffold's surface is then redesigned with backbone flexibility to create a new binding partner for the target. Careful choice of a scaffold will bring experimentally desirable characteristics into the new complex. The use of an anchor both expedites the design process and ensures that binding proceeds against a known location on the target. The use of surface loops on the scaffold allows for flexible-backbone redesign to properly search conformational space.This protocol was implemented within the Rosetta3 software suite. To demonstrate and evaluate this protocol, we have developed a benchmarking set of structures from the PDB with loop-mediated interfaces. This protocol can recover the correct loop-mediated interface in 15 out of 16 tested structures, using only a single residue as an anchor

    Tradeoff Between Stability and Multispecificity in the Design of Promiscuous Proteins

    Get PDF
    Natural proteins often partake in several highly specific protein-protein interactions. They are thus subject to multiple opposing forces during evolutionary selection. To be functional, such multispecific proteins need to be stable in complex with each interaction partner, and, at the same time, to maintain affinity toward all partners. How is this multispecificity acquired through natural evolution? To answer this compelling question, we study a prototypical multispecific protein, calmodulin (CaM), which has evolved to interact with hundreds of target proteins. Starting from high-resolution structures of sixteen CaM-target complexes, we employ state-of-the-art computational methods to predict a hundred CaM sequences best suited for interaction with each individual CaM target. Then, we design CaM sequences most compatible with each possible combination of two, three, and all sixteen targets simultaneously, producing almost 70,000 low energy CaM sequences. By comparing these sequences and their energies, we gain insight into how nature has managed to find the compromise between the need for favorable interaction energies and the need for multispecificity. We observe that designing for more partners simultaneously yields CaM sequences that better match natural sequence profiles, thus emphasizing the importance of such strategies in nature. Furthermore, we show that the CaM binding interface can be nicely partitioned into positions that are critical for the affinity of all CaM-target complexes and those that are molded to provide interaction specificity. We reveal several basic categories of sequence-level tradeoffs that enable the compromise necessary for the promiscuity of this protein. We also thoroughly quantify the tradeoff between interaction energetics and multispecificity and find that facilitating seemingly competing interactions requires only a small deviation from optimal energies. We conclude that multispecific proteins have been subjected to a rigorous optimization process that has fine-tuned their sequences for interactions with a precise set of targets, thus conferring their multiple cellular functions
    corecore