2,022 research outputs found

    Introduction to G2\mathrm{G}_2 geometry

    Full text link
    These notes give an informal and leisurely introduction to G2\mathrm{G}_2 geometry for beginners. A special emphasis is placed on understanding the special linear algebraic structure in 77 dimensions that is the pointwise model for G2\mathrm{G}_2 geometry, using the octonions. The basics of G2\mathrm{G}_2-structures are introduced, from a Riemannian geometric point of view, including a discussion of the torsion and its relation to curvature for a general G2\mathrm{G}_2-structure, as well as the connection to Riemannian holonomy. The history and properties of torsion-free G2\mathrm{G}_2 manifolds are considered, and we stress the similarities and differences with Kahler and Calabi-Yau manifolds. The notes end with a brief survey of three important theorems about compact torsion-free G2\mathrm{G}_2 manifolds.Comment: 37 pages. To appear in a forthcoming volume of the Fields Institute Communications, entitled "Lectures and Surveys on G2 manifolds and related topics". Version 2: Corrected the references. No other change

    The time of the Roma in times of crisis: Where has European neoliberal capitalism failed?

    Get PDF
    This paper argues that the economic and financial crisis that has ensnared Europe from the late 2000s has been instrumental in reshaping employment and social relations in a detrimental way for the majority of the European people. It argues that the crisis has exacerbated the socio-economic position of most Roma people, immigrants as well as of other vulnerable groups. This development is approached here as an outcome of the widening structural inequalities that underpin the crisis within an increasingly neoliberalised Europe. Through recent policy developments and public discourses from a number of European countries I show how rising inequalities nurture racialised social tensions. My account draws on classic and contemporary theoretical propositions that have been propounded about the nature of capitalism, its contemporary re-articulation as well as its ramification for the future of Europe

    Cerebral Cortical Circuitry Formation Requires Functional Glycine Receptors

    Get PDF
    The development of the cerebral cortex is a complex process that requires the generation, migration, and differentiation of neurons. Interfering with any of these steps can impair the establishment of connectivity and, hence, function of the adult brain. Neurotransmitter receptors have emerged as critical players to regulate these biological steps during brain maturation. Among them, α2 subunit-containing glycine receptors (GlyRs) regulate cortical neurogenesis and the present work demonstrates the long-term consequences of their genetic disruption on neuronal connectivity in the postnatal cerebral cortex. Our data indicate that somatosensory cortical neurons of Glra2 knockout mice (Glra2KO) have more dendritic branches with an overall increase in total spine number. These morphological defects correlate with a disruption of the excitation/inhibition balance, thereby increasing network excitability and enhancing susceptibility to epileptic seizures after pentylenetetrazol tail infusion. Taken together, our findings show that the loss of embryonic GlyRα2 ultimately impairs the formation of cortical circuits in the mature brain

    Population-Related Variation in Plant Defense more Strongly Affects Survival of an Herbivore than Its Solitary Parasitoid Wasp

    Get PDF
    The performance of natural enemies, such as parasitoid wasps, is affected by differences in the quality of the host’s diet, frequently mediated by species or population-related differences in plant allelochemistry. Here, we compared survival, development time, and body mass in a generalist herbivore, the cabbage moth, Mamestra brassicae, and its solitary endoparasitoid, Microplitis mediator, when reared on two cultivated (CYR and STH) and three wild (KIM, OH, and WIN) populations of cabbage, Brassica oleracea. Plants either were undamaged or induced by feeding of larvae of the cabbage butterfly, Pieris rapae. Development and biomass of M. brassicae and Mi. mediator were similar on both cultivated and one wild cabbage population (KIM), intermediate on the OH population, and significantly lower on the WIN population. Moreover, development was prolonged and biomass was reduced on herbivore-induced plants. However, only the survival of parasitized hosts (and not that of healthy larvae) was affected by induction. Analysis of glucosinolates in leaves of the cabbages revealed higher levels in the wild populations than cultivars, with the highest concentrations in WIN plants. Multivariate statistics revealed a negative correlation between insect performance and total levels of glucosinolates (GS) and levels of 3-butenyl GS. However, GS chemistry could not explain the reduced performance on induced plants since only indole GS concentrations increased in response to herbivory, which did not affect insect performance based on multivariate statistics. This result suggests that, in addition to aliphatic GS, other non-GS chemicals are responsible for the decline in insect performance, and that these chemicals affect the parasitoid more strongly than the host. Remarkably, when developing on WIN plants, the survival of Mi. mediator to adult eclosion was much higher than in its host, M. brassicae. This may be due to the fact that hosts parasitized by Mi. mediator pass through fewer instars, and host growth is arrested when they are only a fraction of the size of healthy caterpillars. Certain aspects of the biology and life-history of the host and parasitoid may determine their response to chemical challenges imposed by the food plant

    Cosmic strings from pseudo-anomalous Fayet-Iliopoulos U(1) in D3/D7 brane inflation

    Full text link
    We examine the consequences of recent developments on Fayet-Iliopoulos (FI) terms for D-term inflationary models. There is currently no known way to couple constant FI terms to supergravity consistently; only field-dependent FI terms are allowed. These are natural in string theory and we argue that the FI term in D3/D7 inflation turns out to be of this type, corresponding to a pseudo-anomalous U(1). T he anomaly is canceled by the Green-Schwarz mechanism in 4 dimensions. Inflation proceeds as usual, except that the scale is set by the GS parameter. Cosmic strings resulting from a pseudo-anomalous U(1) have potentially interesting characteristics. Originally expected to be global, they turn out to be local in the string theory context and can support currents. We outline the nature of these strings, discuss bounds on their formation, and summarize resulting cosmological consequences.Comment: 10 pages; minor changes to match published versio

    DWSB in heterotic flux compactifications

    Get PDF
    We address the construction of non-supersymmetric vacua in heterotic compactifications with intrinsic torsion and background fluxes. In particular, we implement the approach of domain-wall supersymmetry breaking (DWSB) previously developed in the context of type II flux compactifications. This approach is based on considering backgrounds where probe NS5-branes wrapping internal three-cycles and showing up as four-dimensional domain-walls do not develop a BPS bound, while all the other BPS bounds characterizing the N=1 supersymmetric compactifications are preserved at tree-level. Via a scalar potential analysis we provide the conditions for these backgrounds to solve the ten-dimensional equations of motion including order \alpha' corrections. We also consider backgrounds where some of the NS5-domain-walls develop a BPS bound, show their relation to no-scale SUSY-breaking vacua and construct explicit examples via elliptic fibrations. Finally, we consider backgrounds with a non-trivial gaugino condensate and discuss their relation to supersymmetric and non-supersymmetric vacua in the present context.Comment: 56 pages, 1 figur

    Habitat Specialization in Tropical Continental Shelf Demersal Fish Assemblages

    Get PDF
    The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1–10 m depth), down the fore reef slope to the reef base (10–30 m depth) then across the adjacent continental shelf (30–110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected habitats through which fish can migrate
    corecore