54 research outputs found

    Axial and transverse deep‐water sediment supply to syn‐rift fault terraces: insights from the West Xylokastro Fault Block, Gulf of Corinth, Greece

    Get PDF
    Deep‐water syn‐rift systems develop in partially‐ or transiently‐linked depocentres to form complicated depositional architectures, which are characterised by short transport distances, coarse grain sizes, and a wide range of sedimentary processes. Exhumed systems that can help to constrain the tectono‐stratigraphic evolution of such systems are rare or complicated by inversion tectonics. Here, we document a mid‐Pleistocene deep‐water syn‐rift system fed by Gilbert‐type fan deltas in the hangingwall of a rift margin fault bounding the West Xylokastro Horst block, on the southern margin of the Gulf of Corinth, Greece. Structural and stratigraphic mapping combined with digital outcrop models permit observations along this syn‐rift depositional system from hinterland source to deep‐water sink. The West Xylokastro Fault hangingwall is filled by two distinct sediment systems; an axial system fed by coarse‐grained sediment gravity flows derived from fault‐tip Gilbert‐type fan deltas and a lateral system dominated by mass transport deposits fed from an evolving fault‐scarp apron. Abrupt changes in stratigraphic architecture across the axial system are interpreted to record changes in relative base level, sediment supply and tectonics. Locally, depositional topography and intra‐basinal structures controlled sediment dispersal patterns, from bed‐scale infilling of local rugose topography above mass transport complexes, to basin‐scale confinement from the fault scarp apron. These acted to generate a temporally and spatially variable, heterogeneous stratigraphic architecture throughout the basin‐fill. The transition of the locus of sedimentation from a rift margin to a fault terrace through the syn‐sedimentary growth of a basinward fault produced regressive surfaces updip, which manifest themselves as channels in the deep‐water realm and acted to prograde the system. We present a new conceptual model that recognises coeval axial and transverse systems based on the stratigraphic architecture around the West Xylokastro fault block that emphasises the lateral and vertical heterogeneity of rift basin‐fills with multiple entry points

    Basement structure and its influence on the structural configuration of the northern North Sea

    Get PDF
    The northern North Sea rift basin developed on a heterogeneous crust comprising structures inherited from the Caledonian orogeny and Devonian postorogenic extension. Integrating two-dimensional regional seismic reflection data and information from basement wells, we investigate the prerift structural configuration in the northern North Sea rift. Three seismic facies have been defined below the base rift surface: (1) relatively low-amplitude and low-frequency reflections, interpreted as pre-Caledonian metasediments, Caledonian nappes, and/or Devonian clastic sediments; (2) packages of high-amplitude dipping reflections (>500 ms thick), interpreted as basement shear zones; and (3) medium-amplitude and high-frequency reflections interpreted as less sheared crystalline basement of Proterozoic and Paleozoic (Caledonian) origin. Some zones of Seismic Facies 2 can be linked to onshore Devonian shear zones, whereas others are restricted to the offshore rift area. Interpreted offshore shear zones dip S, ESE, and WNW in contrast to W to NW dipping shear zones onshore West Norway. Our results indicate that Devonian strain and ductile deformation was distributed throughout the Caledonian orogenic belt from central South Norway to the Shetland Platform. Most of the Devonian basins related to this extension are, however, removed by erosion during subsequent exhumation. Basement shear zones reactivated during the rifting and locally control the location and geometry of rift depocenters, e.g., in the Stord and East Shetland basins. Prerift structures with present-day dips >15° were reactivated, although some of the basement shear zones are displaced by rift faults regardless of their orientation relative to rift extension direction

    Quantifying faulting and base level controls on syn-rift sedimentation using stratigraphic architectures of coeval, adjacent Early-Middle Pleistocene fan deltas in Lake Corinth, Greece

    Get PDF
    Quantification of allogenic controls in rift basin‐fills requires analysis of multiple depositional systems because of marked along‐strike changes in depositional architecture. Here, we compare two coeval Early‐Middle Pleistocene syn‐rift fan deltas that sit 6 km apart in the hangingwall of the Pirgaki‐Mamoussia Fault, along the southern margin of the Gulf of Corinth, Greece. The Selinous fan delta is located near the fault tip and the Kerinitis fan delta towards the fault centre. Selinous and Kerinitis have comparable overall aggradational stacking patterns. Selinous comprises 15 cyclic stratal units (ca. 25 m thick), whereas at Kerinitis 11 (ca. 60 m thick) are present. Eight facies associations are identified. Fluvial and shallow water facies dominate the major stratal units in the topset region, with shelfal fine‐grained facies constituting ca. 2 m thick intervals between major topset units and thick conglomeratic foresets building down‐dip. It is possible to quantify delta build times (Selinous: 615 kyr; Kerinitis: >450 kyr) and average subsidence and equivalent sedimentation rates (Selinous: 0.65 m/kyr; Kerinitis: >1.77 m/kyr). The presence of sequence boundaries at Selinous, but their absence at Kerinitis, enables sensitivity analysis of the most uncertain variables using a numerical model, ‘Syn‐Strat’, supported by an independent unit thickness extrapolation method. Our study has three broad outcomes: (a) the first estimate of lake level change amplitude in Lake Corinth for the Early‐Middle Pleistocene (10–15 m), which can aid regional palaeoclimate studies and inform broader climate‐system models; (b) demonstration of two complementary methods to quantify faulting and base level signals in the stratigraphic record—forward modelling with Syn‐Strat and a unit thickness extrapolation—which can be applied to other rift basin‐fills; and (c) a quantitative approach to the analysis of stacking patterns and key surfaces that could be applied to stratigraphic pinch‐out assessment and cross‐hole correlations in reservoir analysis

    Building up or out? Disparate sequence architectures along an active rift margin—Corinth rift, Greece

    Get PDF
    Early Pleistocene synrift deltas developed along the southern Corinth rift margin were deposited in a single, dominantly lacustrine depocenter and were subject to the same climate-related base-level and sediment supply cyclicity. Two synrift deltas, just 50 km apart, show markedly different sequence geometry and evolution related to their location along the evolving border fault. In the west, strongly aggradational fan deltas (>600 m thick; 2–4 km radius) deposited in the immediate hanging wall of the active border fault comprise stacked 30–100-m-thick stratal units bounded by flooding surfaces. Each unit evolves from aggradational to progradational with no evidence for abrupt subaerial exposure or fluvial incision. In contrast, in the central rift, the border fault propagated upward into an already deep lacustrine environment, locating rift-margin deltas 15 km into the footwall. The deltas here have a radius of >9 km and comprise northward downstepping and offlapping units, 50–200 m thick, that unconformably overlie older synrift sediments and are themselves incised. The key factors driving the marked variation in sequence stratigraphic architecture are: (1) differential uplift and subsidence related to position with respect to the border fault system, and (2) inherited topography that influenced shoreline position and offshore bathymetry. Our work illustrates that stratal units and their bounding surfaces may have only local (<10 km) extent, highlighting the uncertainty involved in assigning chronostratigraphic significance to systems tracts and in calculating base-level changes from stratigraphy where marked spatial variations in uplift and subsidence occur

    Source-to-sink analysis in an active extensional setting: Holocene erosion and deposition in the Sperchios rift, central Greece

    No full text
    We present a source-to-sink analysis to explain sediment supply variations and depositional patterns over the Holocene within an active rift setting. We integrate a range of modelling approaches and data types with field observations from the Sperchios rift basin, Central Greece that allow us to analyse and quantify (1) the size and characteristics of sediment source areas, (2) the dynamics of the sediment routing system from upstream fluvial processes to downstream deposition at the coastline, and (3) the depositional architecture and volumes of the Holocene basin fill. We demonstrate that the Sperchios rift comprises a 'closed' system over the Holocene and that erosional and depositional volumes are thus balanced. Furthermore, we evaluate key controls in the development of this source-to-sink system, including the role of pre-existing topography, bedrock erodibility and lateral variations in the rate of tectonic uplift/subsidence. We show that tectonic subsidence alone can explain the observed grain size fining along the rift axis resulting in the downstream transition from a braided channel to an extensive meander belt ( > 15 km long) that feeds the fine-grained Sperchios delta. Additionally, we quantify the ratios of sediment storage to bypass for the two main footwall-sourced alluvial fan systems and relate the fan characteristics to the pattern and rates of fault slip. Finally, we show that ≥40% of the sediment that builds the Sperchios delta is supplied by ≤22% of the entire source area and that this can be primarily attributed to a longer-term (~10 6 years) transient landscape response to fault segment linkage. Our multidisciplinary approach allows us to quantify the relative importance of multiple factors that control a complex source-to-sink system and thus improve our understanding of landscape evolution and stratigraphic development in active extensional tectonic settings

    Rift kinematics preserved in deep-time erosional landscape below the northern North Sea

    Get PDF
    Our understanding of continental rifting is, in large parts, derived from the stratigraphic record. This record is, however, incomplete as it does not often capture the geomorphic and erosional signal of rifting. New 3D seismic reflection data reveal a Late Permian-Early Triassic landscape incised into the pre-rift basement of the northern North Sea. This landscape, which covers at least 542 km2, preserves a drainage system bound by two major tectonic faults. A quantitative geomorphic analysis of the drainage system reveals 68 catchments, with channel steepness and knickpoint analysis of catchment-hosted palaeo-rivers showing that the landscape preserved a >2 Myr long period of transient tectonics. We interpret that this landscape records a punctuated uplift of the footwall of a major rift-related normal fault (Vette Fault) at the onset of rifting. The landscape was preserved by a combination of relatively rapid subsidence in the hangingwall of a younger fault (Øygarden Fault) and burial by post-incision sediments. As such, we show how and why erosional landscapes are preserved in the stratigraphic record, and how they can help us understand the tectono-stratigraphic evolution of ancient continental rifts

    Straight from the source's mouth: Controls on field‐constrained sediment export across the entire active Corinth Rift, central Greece

    Get PDF
    The volume and grain‐size of sediment supplied from catchments fundamentally control basin stratigraphy. Despite their importance, few studies have constrained sediment budgets and grain‐size exported into an active rift at the basin scale. Here, we used the Corinth Rift as a natural laboratory to quantify the controls on sediment export within an active rift. In the field, we measured the hydraulic geometries, surface grain‐sizes of channel bars and full‐weighted grain‐size distributions of river sediment at the mouths of 47 catchments draining the rift (constituting 83% of the areal extent). Results show that the sediment grain‐size increases westward along the southern coast of the Gulf of Corinth, with the coarse‐fraction grain‐sizes (84th percentile of weighted grain‐size distribution) ranging from approximately 19 to 91 mm. We find that the median and coarse‐fraction of the sieved grain‐size distribution are primarily controlled by bedrock lithology, with late Quaternary uplift rates exerting a secondary control. Our results indicate that grain‐size export is primarily controlled by the input grain‐size within the catchment and subsequent abrasion during fluvial transport, both quantities that are sensitive to catchment lithology. We also demonstrate that the median and coarse‐fraction of the grain‐size distribution are predominantly transported in bedload; however, typical sand‐grade particles are transported as suspended load at bankfull conditions, suggesting disparate source‐to‐sink transit timescales for sand and gravel. Finally, we derive both a full Holocene sediment budget and a grain‐size‐specific bedload discharged into the Gulf of Corinth using the grain‐size measurements and previously published estimates of sediment fluxes and volumes. Results show that the bedload sediment budget is primarily comprised (~79%) of pebble to cobble grade (0.475–16 cm). Our results suggest that the grain‐size of sediment export at the rift scale is particularly sensitive to catchment lithology and fluvial mophodynamics, which complicates our ability to make direct inferences of tectonic and palaeoenvironmental forcing from local stratigraphic characteristics

    Strain migration during multiphase extension, Stord Basin, northern North Sea rift

    Get PDF
    In regions experiencing multiple phases of extension, rift-related strain can vary along and across the basin during and between each phase, and the location of maximum extension can differ between the rift phase. Despite having a general understanding of multiphase rift kinematics, it remains unclear why the rift axis migrates between extension episodes. The role pre-existing structures play in influencing fault and basin geometries during later rifting events is also poorly understood. We study the Stord Basin, northern North Sea, a location characterised by strain migration between two rift episodes. To reveal and quantify the rift kinematics, we interpreted a dense grid of 2D seismic reflection profiles, produced time-structure and isochore (thickness) maps, collected quantitative fault kinematic data and calculated the amount of extension (β-factor). Our results show that the locations of basin-bounding fault systems were controlled by pre-existing crustal-scale shear zones. Within the basin, Permo-Triassic Rift Phase 1 (RP1) faults mainly developed orthogonal to the E-W extension direction. Rift faults control the locus of syn-RP1 deposition, whilst during the inter-rift stage, areas of clastic wedge progradation are more important in controlling sediment thickness trends. The calculated amount of RP1 extension (β-factor) for the Stord Basin is up to β = 1.55 (¹10%, 55% extension). During the subsequent Middle Jurassic-Early Cretaceous Rift Phase 2 (RP2), however, strain localised to the west along the present axis of the South Viking Graben, with the Stord Basin being almost completely abandoned. Rift axis migration during RP2 is interpreted to be related to changes in lithospheric strength profile, possibly related to the ultraslow extension (<1 mm/year during RP1), the long period of tectonic quiescence (ca. 50 myr) between RP1 and RP2 and possible underplating. Our results highlight the very heterogeneous nature of temporal and lateral strain migration during and between extension phases within a single rift basin

    Tectono-sedimentary evolution of active extensional basins

    No full text
    dimensional evolution of basin linkage through fault propagation, the evolution of drainage and drainage catchments and the effects of changes in climate and sea/lake level. In particular, the processes of fault propagation, growth, linkage and death are major tectonic controls on basin architecture. Current theoretical and experimental models of fault linkage and the direction of fault growth can be tested using observational evidence from the earliest stages of rift development. Basin linkage by burial or breaching of crossover basement ridges is the dominant process whereby hydrologically closed rifts evolve into open ones. Nontectonic effects arising from climate, sea or lake level change are responsible for major changes in basin-scale sedimentation patterns. Major gaps in our understanding of rift basins remain because of current inadequacies in sediment, fault and landscape dating

    The Megara basin

    No full text
    • …
    corecore