1,467 research outputs found

    One-sided versus two-sided stochastic descriptions

    Get PDF
    It is well-known that discrete-time finite-state Markov Chains, which are described by one-sided conditional probabilities which describe a dependence on the past as only dependent on the present, can also be described as one-dimensional Markov Fields, that is, nearest-neighbour Gibbs measures for finite-spin models, which are described by two-sided conditional probabilities. In such Markov Fields the time interpretation of past and future is being replaced by the space interpretation of an interior volume, surrounded by an exterior to the left and to the right. If we relax the Markov requirement to weak dependence, that is, continuous dependence, either on the past (generalising the Markov-Chain description) or on the external configuration (generalising the Markov-Field description), it turns out this equivalence breaks down, and neither class contains the other. In one direction this result has been known for a few years, in the opposite direction a counterexample was found recently. Our counterexample is based on the phenomenon of entropic repulsion in long-range Ising (or "Dyson") models.Comment: 13 pages, Contribution for "Statistical Mechanics of Classical and Disordered Systems

    Introduction to G2\mathrm{G}_2 geometry

    Full text link
    These notes give an informal and leisurely introduction to G2\mathrm{G}_2 geometry for beginners. A special emphasis is placed on understanding the special linear algebraic structure in 77 dimensions that is the pointwise model for G2\mathrm{G}_2 geometry, using the octonions. The basics of G2\mathrm{G}_2-structures are introduced, from a Riemannian geometric point of view, including a discussion of the torsion and its relation to curvature for a general G2\mathrm{G}_2-structure, as well as the connection to Riemannian holonomy. The history and properties of torsion-free G2\mathrm{G}_2 manifolds are considered, and we stress the similarities and differences with Kahler and Calabi-Yau manifolds. The notes end with a brief survey of three important theorems about compact torsion-free G2\mathrm{G}_2 manifolds.Comment: 37 pages. To appear in a forthcoming volume of the Fields Institute Communications, entitled "Lectures and Surveys on G2 manifolds and related topics". Version 2: Corrected the references. No other change

    Fixed Effect Estimation of Large T Panel Data Models

    Get PDF
    This article reviews recent advances in fixed effect estimation of panel data models for long panels, where the number of time periods is relatively large. We focus on semiparametric models with unobserved individual and time effects, where the distribution of the outcome variable conditional on covariates and unobserved effects is specified parametrically, while the distribution of the unobserved effects is left unrestricted. Compared to existing reviews on long panels (Arellano and Hahn 2007; a section in Arellano and Bonhomme 2011) we discuss models with both individual and time effects, split-panel Jackknife bias corrections, unbalanced panels, distribution and quantile effects, and other extensions. Understanding and correcting the incidental parameter bias caused by the estimation of many fixed effects is our main focus, and the unifying theme is that the order of this bias is given by the simple formula p/n for all models discussed, with p the number of estimated parameters and n the total sample size.Comment: 40 pages, 1 tabl

    Evaluation of range of motion restriction within the hip joint

    Get PDF
    In Total Hip Arthroplasty, determining the impingement free range of motion requirement is a complex task. This is because in the native hip, motion is restricted by both impingement as well as soft tissue restraint. The aim of this study is to determine a range of motion benchmark which can identify motions which are at risk from impingement and those which are constrained due to soft tissue. Two experimental methodologies were used to determine motions which were limited by impingement and those motions which were limited by both impingement and soft tissue restraint. By comparing these two experimental results, motions which were limited by impingement were able to be separated from those motions which were limited by soft tissue restraint. The results show motions in extension as well as flexion combined with adduction are limited by soft tissue restraint. Motions in flexion, flexion combined with abduction and adduction are at risk from osseous impingement. Consequently, these motions represent where the maximum likely damage will occur in femoroacetabular impingement or at most risk of prosthetic impingement in Total Hip Arthroplasty

    The host metabolite D-serine contributes to bacterial niche specificity through gene selection

    Get PDF
    Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity

    Identification of hot-spot residues in protein-protein interactions by computational docking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of protein-protein interactions is becoming increasingly important for biotechnological and therapeutic reasons. We can define two major areas therein: the structural prediction of protein-protein binding mode, and the identification of the relevant residues for the interaction (so called 'hot-spots'). These hot-spot residues have high interest since they are considered one of the possible ways of disrupting a protein-protein interaction. Unfortunately, large-scale experimental measurement of residue contribution to the binding energy, based on alanine-scanning experiments, is costly and thus data is fairly limited. Recent computational approaches for hot-spot prediction have been reported, but they usually require the structure of the complex.</p> <p>Results</p> <p>We have applied here normalized interface propensity (<it>NIP</it>) values derived from rigid-body docking with electrostatics and desolvation scoring for the prediction of interaction hot-spots. This parameter identifies hot-spot residues on interacting proteins with predictive rates that are comparable to other existing methods (up to 80% positive predictive value), and the advantage of not requiring any prior structural knowledge of the complex.</p> <p>Conclusion</p> <p>The <it>NIP </it>values derived from rigid-body docking can reliably identify a number of hot-spot residues whose contribution to the interaction arises from electrostatics and desolvation effects. Our method can propose residues to guide experiments in complexes of biological or therapeutic interest, even in cases with no available 3D structure of the complex.</p

    Threat-sensitive anti-predator defence in precocial wader, the northern lapwing Vanellus vanellus

    Get PDF
    Birds exhibit various forms of anti-predator behaviours to avoid reproductive failure, with mobbing—observation, approach and usually harassment of a predator—being one of the most commonly observed. Here, we investigate patterns of temporal variation in the mobbing response exhibited by a precocial species, the northern lapwing (Vanellus vanellus). We test whether brood age and self-reliance, or the perceived risk posed by various predators, affect mobbing response of lapwings. We quantified aggressive interactions between lapwings and their natural avian predators and used generalized additive models to test how timing and predator species identity are related to the mobbing response of lapwings. Lapwings diversified mobbing response within the breeding season and depending on predator species. Raven Corvus corax, hooded crow Corvus cornix and harriers evoked the strongest response, while common buzzard Buteo buteo, white stork Ciconia ciconia, black-headed gull Chroicocephalus ridibundus and rook Corvus frugilegus were less frequently attacked. Lapwings increased their mobbing response against raven, common buzzard, white stork and rook throughout the breeding season, while defence against hooded crow, harriers and black-headed gull did not exhibit clear temporal patterns. Mobbing behaviour of lapwings apparently constitutes a flexible anti-predator strategy. The anti-predator response depends on predator species, which may suggest that lapwings distinguish between predator types and match mobbing response to the perceived hazard at different stages of the breeding cycle. We conclude that a single species may exhibit various patterns of temporal variation in anti-predator defence, which may correspond with various hypotheses derived from parental investment theory

    Absorption and mobility of foliar-applied boron in soybean as affected by plant boron status and application as a polyol complex

    Get PDF
    In the present study (i) the impact of plant Boron (B) status on foliar B absorption and (ii) the effect of B complexation with polyols (sorbitol or mannitol) on B absorption and translocation was investigated. Soybean (Glycine max (L.) Meer.) plants grown in nutrient solution containing 0 μM, 10 μM, 30 μM or 100 μM 11B labelled boric acid (BA) were treated with 50 mM 10B labelled BA applied to the basal parts of two leaflets of one leaf, either pure or in combination with 500 mM sorbitol or mannitol. After one week, 10B concentrations in different plant parts were determined. In B deficient leaves (0 μM 11B), 10B absorption was significantly lower than in all other treatments (9.7% of the applied dose vs. 26%–32%). The application of BA in combination with polyols increased absorption by 18–25% as compared to pure BA. The absolute amount of applied 10B moving out of the application zone was lowest in plants with 0 μM 11B supply (1.1% of the applied dose) and highest in those grown in 100 μM 11B (2.8%). The presence of sorbitol significantly decreased the share of mobile 10B in relation to the amount absorbed. The results suggest that 11B deficiency reduces the permeability of the leaf surface for BA. The addition of polyols may increase 10B absorption, but did not improve 10B distribution within the plant, which was even hindered when applied a sorbitol complex

    Thermodynamic signature of growing amorphous order in glass-forming liquids

    Full text link
    Although several theories relate the steep slowdown of glass formers to increasing spatial correlations of some sort, standard static correlation functions show no evidence for this. We present results that reveal for the first time a qualitative thermodynamic difference between the high temperature and deeply supercooled equilibrium glass-forming liquid: the influence of boundary conditions propagates into the bulk over larger and larger lengthscales upon cooling, and, as this static correlation length grows, the influence decays nonexponentially. Increasingly long-range susceptibility to boundary conditions is expected within the random firt-order theory (RFOT) of the glass transition, but a quantitative account of our numerical results requires a generalization of RFOT where the surface tension between states fluctuates
    corecore