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One-Sided Versus Two-Sided Stochastic
Descriptions

Aernout C. D. van Enter

Abstract It is well-known that discrete-time finite-state Markov Chains, which are
described by one-sided conditional probabilities which describe a dependence on
the past as only dependent on the present, can also be described as one-dimensional
MarkovFields, that is, nearest-neighborGibbsmeasures forfinite-spinmodels,which
are described by two-sided conditional probabilities. In such Markov Fields the time
interpretation of past and future is being replaced by the space interpretation of an
interior volume, surrounded by an exterior to the left and to the right. If we relax the
Markov requirement to weak dependence, that is, continuous dependence, either on
the past (generalising theMarkov-Chain description) or on the external configuration
(generalising the Markov-Field description), it turns out this equivalence breaks
down, and neither class contains the other. In one direction this result has been known
for a few years, in the opposite direction a counterexample was found recently. Our
counterexample is based on the phenomenon of entropic repulsion in long-range
Ising (or “Dyson”) models.

Keywords Long-range Ising models · g-measures · Gibbs measures · Entropic
repulsion.

AMS 2000 subject classification Primary- 60K35 · secondary- 82B20

1 Introduction

It has been known since more than 40years that finite-state discrete-time Markov
Chains are equivalent to Markov Fields (one-dimensional nearest-neighbour finite-
spinGibbsmeasures) [34],Ch3.This resultwas independently obtainedbyBrascamp
and Spitzer.
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In a Markov Chain the future is independent of the past, given the present; in
a Markov Field the inside of a (finite) area is independent of the outside, given
the border. If space is Z, one-dimensional, and time is discrete (thus also the one-
dimensional integer line Z), the difference in description is therefore between a
one-sided (time-like) versus a two-sided (space-like) conditioning. But despite this,
one obtains the same class of measures, as long as the conditioning is Markovian.

A Markovian modeller displays a certain short-sightedness:
For a Markov-Chain modeller, if one knows the present one controls the future

(“All History is Bunk” (Henry Ford)); and for a Markov-Field modeller, to rule an
area it suffices to “Control the Borders”. And in one dimension these are indeed
the same.

On the other hand, ifwe consider arbitrary stochastic processes, one-sided descrip-
tions and two-sided descriptions can provide highly non-equivalent results.

A famous example thereof is the existence of measures which are ergodic and
have a positive—one-sided—Kolmogorov-Sinai entropy, (and have possibly even a
one-sided trivial tail), thus being one-sided “stochastic”, despite having a full, thus
maximally non-trivial, two-sided tail, therefore being two-sided deterministic [36,
51] and thus having a zero two-sided entropy density. We remark that the quantity
which we here call a “two-sided “entropy, is a one-dimensional example of entropy-
like quantities which can be defined on more general graphs; such quantities have
been also called “inner” or “conditional” or “lower” or “erasure” entropies in the
literature [18, 22, 29, 57, 58].

These above examples, due to Gurevich, and to Ornstein and Weiss, provided
non-equivalence of one-sided and two-sided entropies [57], one-sided and two-sided
tail properties, [38] etc. We notice that many quantities and properties from Ergodic
Theory (Kolmogorov-Sinai entropy, K-property, Bernoulli property, Isomorphism as
Dynamical Systems) are defined in terms of one-sided objects or descriptions.

However, those examples lack continuity properties of their conditional prob-
abilities. Such continuity properties in space in fact characterise Gibbs measures
[46, 56].

Thus the Gurevich and Ornstein-Weiss examples are excluded if one restricts
oneself to the class of Gibbs measures.

In fact, it is known that one-sided and two-sided entropy densities for Gibbs mea-
sures (for absolutely summable potentials) are identical [18, 57], and that under some
stronger conditions on the interaction decay, one-sided and two-sided tail properties
of Gibbs measures are the same [38].

For Gibbs measures in one dimension, it was open for a long time if one-sided
and two-sided characterisations were equivalent.

The measures which have one-sided continuous conditional probabilities are
known as g-measures (or “chains with complete connections” or “chains of infi-
nite order”, or “random Markov chains”). They were introduced in the thirties and
repeatedly rediscovered (under different names) [16, 37, 44, 45, 50]. A few years
ago, Fernández, Gallo and Maillard [24] constructed a g-measure—with one-sided
continuous conditional probabilities– which is not a Gibbs measure, as its two-sided
conditional probabilities are not continuous.
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Here we discuss our [5] recently finding an opposite result, namely that the
Gibbs measures of the Dyson models—which have two-sided continuous condi-
tional probabilities—are not g-measures, as their one-sided conditional probabilities
are not continuous.

Note that, in contrast to all the earlier counterexamples of Gurevich, Ornstein-
Weiss, and Fernández-Gallo-Maillard, in our case the two-sided behaviour is more
“regular”, more “stochastic”, than the one-sided behaviour.

2 Background and Notation

2.1 Dyson Models

Here we describe some properties of one-dimensional long-range spin models, also
known as Dyson models.

In his original work, Dyson [17] considered an Ising spin system in one dimension
(on Z), with formal Hamiltonian given by

H(ω) = −
∑

i> j

J (|i − j |)ωiω j (2.1)

and J (n) ≥ 0 for n ∈ N is of the form J (n) = n−α.
A conjecture due toKac andThompson [43] had stated that there should be a phase

transition for low enough temperatures if and only if α ∈ (1, 2] (in zero magnetic
field). Dyson proved a part of the Kac-Thompson conjecture, namely that for long-
range models with interactions of the form J (n) = n−α with α ∈ (1, 2), there is a
phase transition at low temperatures.

Later different proofs were found, [1, 10, 32, 42] and also the case α = 2 was
shown to have a transition [33].

In summary the following holds:

Proposition 1 ([1, 10, 17, 32–34, 42, 49, 54]). The Dyson model with polynomially
decaying potential, for 1 < α ≤ 2, exhibits a phase transition at low temperature:

∃βD
c > 0, such that β > βD

c =⇒ μ− �= μ+ and G(γD) = [μ−,μ+]

where the extremal measures μ+ and μ− are translation-invariant. They have in par-
ticular opposite magnetisations μ+[σ0] = −μ−[σ0] = M0(β,α) > 0 at low temper-
atures. Moreover, the Dyson model in a non-zero homogeneous field h has a unique
Gibbs measure at all temperatures.

It is well-known that there is no phase transition for J (n) being of finite range,
and neither for J (n) = n−α with α > 2.
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Remark 1 The case of α = 2 is more complicated to analyse, and richer in its
behaviour, than the other ones. There exists a hybrid transition (the “Thouless effect”),
as the magnetisation is discontinuous while the energy density is continuous at the
transition point. Moreover, there is second transition below this transition tempera-
ture. In the intermediate phase there is a positive magnetisation with non-summable
covariance, while at very low temperatures the covariance decays at the same rate as
the interaction, which is summable. For these results, see [1, 39, 40].

Here we will make use of the approach of [10], which has been extended to a
number of other situations (Dyson models in random fields [13], interfaces [11],
phase separation [12], inhomogeneous decaying fields [6], etc). The disadvantage of
this approach is that it works only at very low temperatures, as it is perturbative, and
it works only for a reduced set of α-values, α∗ < α < 2, with α∗ = 3 − ln 3

ln 2 . The
advantage, however, compared to other proofs, is that translation invariance does not
play that much of a role.

The main idea of the approach of [10], which was introduced in the α = 2 case by
Fröhlich and Spencer in [33], is to construct a kind of triangular contours for which
a Peierls-type contour argument can be obtained. The energy of a contour of length
L has an energy cost associated to it of order O(L2−α), (and of order O(ln L) when
α = 2).

There has been substantial interest in the Dyson model over the years.
Varying the decay parameter α plays a similar role as varying the dimension

in short-range models. This can be done in a continuous manner, so one obtains
analogues of well-defined models in continuously varying non-integer dimensions.
This is one major reason why these models have attracted a lot of attention in the
study of phase transitions and critical behaviour (see e.g. [10] and references therein).

For some recent results for these long-range Dyson models with polynomially
decaying interactions, see [6, 12, 14, 20, 21, 49].

2.2 Specifications and Measures

Werefer to [7, 19, 23, 31, 34, 53] formore general treatments of theGibbs formalism.
Dysonmodels are special, as they are ferromagnetic Isingmodels with long-range

pair interactions in one dimension.
We consider these models as belonging to a more general class of lattice

(spin) models with Gibbs measures on infinite-volume product configuration spaces
(�,F , ρ) = (EZ

d
, E⊗Z

d
,μ⊗Z

d

o ). In our case d = 1, and the single-site state space is
the Ising space E = {−1,+1},with the apriori countingmeasureμ0 = 1

2δ−1 + 1
2δ+1.

We denote by S the set of the finite subsets of Z and, for any � ∈ S, write
(��,F�, ρ�) for the finite-volume configuration space (E�, E⊗�,μ⊗�

o ). We also
will consider only translation-invariant models.

Microscopic states or configurations, denoted by σ,ω, η, τ , etc., are elements of
�, equipped with the product topology of the discrete topology on E , for which these
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configurations are close when they coincide on large finite regions � (the larger the
region where they are equal, the closer the configurations are).

We denote by C(�) the set of continuous (quasilocal) functions on �, character-
ized by

f ∈ C(�) ⇐⇒ lim
�↑Z

sup
σ,ω:σ�=ω�

| f (ω) − f (σ) |= 0. (2.2)

The fact that we consider ferromagnetic pair interactions provides us with an
extra tool:

We can make use of FKG inequalities. Monotonicity for functions and measures
concerns the natural partial (FKG) [30] order “≤”, which we have on our Ising spin
systems:σ ≤ ω if and only ifσi ≤ ωi for all i ∈ Z. Itsmaximal andminimal elements
are the configurations + and −, and this order extends to functions: f : � −→ R

is called monotone increasing when σ ≤ ω implies f (σ) ≤ f (ω). For measures,
we write μ ≤ ν if and only if μ[ f ] ≤ ν[ f ] for all f monotone increasing.1 FKG
arguments are based on the observation that increasing the interaction, or an external
field, will FKG-increase the associated Gibbs measure.

Macroscopic states are represented by probability measures on (�,F , ρ).
Following Dobrushin, Lanford and Ruelle, DLR or Gibbs measures are defined

in terms of consistent systems of (regular versions of) finite-volume conditional
probabilities, of finite-volume configurations with prescribed boundary conditions
outside of those volumes [15, 47]. Such a family of (everywhere, rather than almost
everywhere, defined, as one has not yet a measure, which could determine that
something is almost sure with respect to it) conditional probabilities is called a
specification.

A measure for which a version of its conditional probabilities provides those of
the specification is said to satisfy the DLR conditions for that specification. The
specifications of interest in the theory of lattice systems usually satisfy a finite-
energy condition. This says that no configuration in a local volume is excluded (has
probability zero), uniformly in the boundary conditions. Moreover, the condition of
continuity (or quasilocality) is required. This says that all conditional probabilities
are continuous (quasilocal) functions of the boundary conditions.

Remark 2 In contrast to Kolmogorov’s theorem, which says that a system of consis-
tent marginal probabilities defines precisely one probability measure, for finite-spin
specifications the number of measures satisying the DLR conditions for that speci-
fication can be either one or infinitely many. The latter situation sometimes is taken
as the definition of a Phase Transition.

Ameasure is said to be quasilocalwhen it is specified by a quasilocal specification.
A particularly important approach to quasilocal measures consists in considering

the Gibbs measures with (formal) Hamiltonian H defined via a potential (or inter-
action) �, a family � = (�A)A∈S of local functions �A ∈ FA. The contributions of

1We denote μ[ f ] for the expectation Eμ[ f ] under a measure μ.
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spins in finite sets A to the total energy define the finite-volume Hamiltonians with
free boundary conditions

∀� ∈ S, H�(ω) =
∑

A⊂�

�A(ω), ∀ω ∈ �. (2.3)

To defineGibbsmeasures, we require for� that it isUniformly Absolutely Summable
(UAS), i.e. that

∑
A�i supω |�A(ω)| < ∞,∀i ∈ Z. One then can give sense to the

Hamiltonian at volume � ∈ S with boundary condition ω defined for all σ,ω ∈
� as H�

� (σ|ω) := ∑
A∩� �=∅ �A(σ�ω�c)(< ∞). The Gibbs specification at inverse

temperature β > 0 is then defined by

γ
β�
� (σ | ω) = 1

Zβ�

� (ω)
e−βH�

� (σ|ω)(ρ� ⊗ δω�c )(dσ) (2.4)

where the partition function Zβ�

� (ω) is a normalizing constant. Due to the UAS
condition, these specifications are quasilocal. It turns out that the converse is also
true up to a non-nullness condition2 (see e.g. [23, 34, 46, 48, 56]) and one can take:

Definition 1 (Gibbs measures) μ ∈ M+
1 is a Gibbs measure iff μ ∈ G(γ), that is,

the conditional probabilities of μ—at least a version thereof- are those given by γ
where γ is a non-null and quasilocal specification.

lim
�↑Z

sup
ω1,ω2∈�

∣∣∣μ
[

f |F�c

]
(ω�ω1

�c) − μ
[

f |F�c

]
(ω�ω2

�c)

∣∣∣ = 0 (2.5)

Thus, for Gibbs measures the conditional probabilities always have continuous ver-
sions, or equivalently there is no point of essential discontinuity. Points of essential
discontinuity are configurations which are points of discontinuity for ALL versions
of the conditional probability. In particular one cannot make conditional probabili-
ties continuous by redefining them on a measure-zero set if such points exist. In the
generalized Gibbsian framework, one also says that such a configuration is a bad
configuration for the considered measure, see e.g. [48]. The existence of such bad
configurations implies non-Gibbsianness of the associated measures.

Remark 3 If the interaction is of finite range (a Markov Field), or sufficiently fast
decaying, uniqueness of the Gibbs measure holds; indeed no phase transition is
expected in one dimension in considerable generality. But the Dyson model gives a
counterexample if just UAS is required.

Remark 4 In fact it is enough to know the single-site conditional probabilities—the
single-site specification—, all other conditional probabilities can be obtained from
those.

2Expressing that ∀� ∈ S, ∀A ∈ F�, ρ(A) > 0 implies that γ�(A|ω) > 0 for any ω ∈ �.
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Although the extension of the DLR equation to infinite sets is direct in case of
uniqueness of the DLR-measure for a given specification [27, 28, 35], it can be more
problematic otherwise: it is valid for finite sets only and measurability problems
might arise in case of phase transitions when one wants to extend them to infinite
sets. Nevertheless, beyond the uniqueness case, such an extension wasmade possible
byFernández andPfister [27] in the case of attractivemodels, that ismodels satisfying
FKG properties.

As we will make use of it, we describe it now in our particular case. The concept
they introduced is that of a global specification.

A global specification is a set of consistent conditional probabilities where one
considers probabilities of sets which have their supports not only in finite sets, but in
more general sets S ∈ Z, which can be infinite, possibly with infinite complements.
The existence of such a global specification can be invoked to derive the existence
of conditional probabilities of sets in E S , and the possibility of conditioning on
configurations in E Sc

.
Note, by considering S = Z, that the set of measures a version of whose condi-

tional probabilities is given by a global specification contains at most one element.
The case we will be most interested in is the situation where we condition on only

one half-line. This leads us to the concept of g-measures.
The formalism of g-measures can be developed in a parallel manner to the Gibbs

formalism, but only using one-sided objects (conditional probabilities, specifications,
etc.).

We will call a measure a g-measure, once the future depends in a continuous
manner on the past.

Definition 2 Letμ be ameasure on� = EZ.Wewill callμ a g-measure for the func-
tion g if the conditional probability for the next symbol being a,μ(x0 = a|{ωi }i<0) =
g(ωZ−a), depends in a continuousmanner on the past, that is, g is continuous function
on EZ

−
.

For further description and background, we refer to [3]

Remark 5 We can also obtain the equivalent of a specification, a “LIS” (Left Interval
Specification) for which the measure is a g-measure, analogously to the Gibbs mea-
sure definition [25, 26]. This is based on the observation that one can build general
conditional probabilities from single-site ones.

Remark 6 Although in the Markov-Chain set-up (which is a simple and well-known
example of a g-measure) uniqueness holds, in the general g-measure case, similarly
to the Gibbsian set-up, under only the condition of continuity phase transitions are
possible [2, 8]. However, although under appropriate uniqueness conditions (uni-
form boundedness of boundary energies, or Dobrushin uniqueness, for example)
g-measures and Gibbs measures turn out to be the same objects ([3, 25, 26], no
general equivalence seems to apply in a more general setting. Thus the connection
between the different classes of phase transitions possible is mostly unknown (if
there even is one).
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3 From Interface Localisation to Entropic Repulsion, and
from There to the Lack of the G-Measure Property:One
Ingredient and Three Observations

(I) The Main Ingredient: Mesoscopic Interface Localisation

In [11] the main result describes the mesoscopic localisation of an “interface
point” at low temperatures, for a Dyson model with Dobrushin boundary conditions
(minus to the left, plus to the right).

If one considers an interval [−L ,+L]with such Dobrushin boundary conditions,
with probability close to 1 the interface point is near the center, that is, with large
probability it is not more than O(L

α
2 ) away from the center with a (Gaussian) prob-

ability distribution; moreover the probability for the interface point being at larger
distances than εL from the origin is bounded by O(L exp−L2−α). The system is in a
minus-like phase with strictly negative magnetisation left of the interface point, and
in a plus-like phase with positive magnetisation to the right of the interface point.

Although there are some extra conditions required (on the decay power, and the
strength of the nearest-neighbour term), due to the use of the triangular contours of
[10], it seems that one can rid of those with enough effort, see [6, 49]. Moreover,
for a counterexample, of course we need not strive for the greatest generality, so we
assume that all necessary conditions are satisfied (and there are enough situations
known where this happens).

(II) First Observation: From Interface Localisation To Entropic Repulsion

It is a simple observation that if we change all spins at sites left of−N fromminus to
plus, with N chosen large enough so that L × N 1−α is small (in particular, then N is
much larger than L), this does not change the probability distribution in the interval
[−L , L] by that much. If the energy differences are small, so are the differences in
(conditional) Gibbsian probabilities.

If we move the right border further to the right than +L , the interface point can
only move to the right, due to an FKG argument. This implies that if we take the
plus measure μ+ and condition on a large O(N ) interval to be minus, typically at a
distance at least of size L one finds oneself in a minus-like phase. The interpretation
of this is that a “hard” (frozen) minus-interval pushes an interface away, due to an
entropic-repulsion mechanism. The minus-phase can be seen in terms of a wetting
phenomenon, as a “wet region”.

It should be noted that the effect requires positive, non-zero temperature.
Moreover for the case α = 2 there is no mesoscopic localisation, but the position

of the interface point has macroscopic fluctuations. Thus in that case, our proof
breaks down.

(III) Second Observation: Decoupling A Not Too Large Interval Does Not Shift
The Interface

The position of the interface point does not change much if, next to the frozen minus
interval, we decouple all the sites in a large but not too large interval to the right of it



One-Sided Versus Two-Sided Stochastic Descriptions 29

(that is at distance less than L0, with L0(L) much less than L , but possibly diverging
with growing L). This follows again from the contour analysis of [11]. Moving the
interface point by a macroscopic distance (proportional to L) costs an energy which
diverges with L . If the total energy of an interval of size L0 is less than that, then the
interface point won’t move on a macroscopic (O(L)) scale.

(IV) Third Observation: Changing A Decoupled Interval To An Alternating
One Costs Finite Energy

If we choose an alternating configuration in the interval of size L0, and restore its
interaction with its complement, the interaction energy with its exterior is uniformly
bounded. Namely, the sum below satisfies:∑

i=1...L0

∑
k>L0

|k − i |−α(−1)iωk =∑
i=0...L0

∑
k>L0

O(|k − i |−α − |k + 1 − i |−α) <∑
i<L0

∑
k>L0

O(|k − i |−(α+1) < ∞.

It is known that finite-energy perturbations will cause only relatively small, essen-
tially microscopic, changes [9]. In particular, shifting the interface point costs a finite
energy only if the shift is over a finite distance.

Thus a large alternating interval, precededby a (VERY) large frozenminus interval
configuration again is succeeded by a minus phase, while, when it is preceded by
a plus interval, it is succeeded by a plus-phase interval. But this dependence on the
presence of a frozen plus or minus interval far (of order L0) to the left (= in the
past), violates the continuity condition which is required for μ+ to be a g-measure.
As our measure was defined to be a Gibbs measure for the Dyson interaction, it
automatically has two-sided continuity; thus we have obtained our counterexample.

We can therefore conclude [5]:

Theorem 1 The low-temperature Gibbs measures of Dyson models cannot be writ-
ten as g-measures for a continuous g-function. Therefore, of the class of Gibbs
measures for quasilocal specifications and the class of g-measures with continuous
g-functions, neither of the two classes contains the other one.

4 Conclusion, Final Remarks, Higher Dimensions

We have shown that one-sided and two-sided continuity of conditional probabilities
not only are not equivalent, but that neither of the two continuity conditions implies
the other one.

In other words, controlling your borders and controlling the future are not the
same things, except if you are a short-sighted Markovian.

Although the result in [5] was proven under some restrictions on α, and the proof
also requires the presence of a large enough nearest-neighbour interaction, in view
of the results of [6, 49] these conditions can presumably be removed.
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However, the situation for α = 2 remains unclear, as the main idea of our proof
(mesoscopic localisation of the interface point) fails. It is not clear to us what to
expect in that case.

In higher dimensions, the Markov-Field property occurs as a “Local” Markov
property, whereas other properties, such as the Global Markov property or being a
(tree-indexed) Markov Chain (a “splitting Gibbs measure”) on tree graphs, play a
role which looks more like the Markov-Chain property. It is known, however, that
in contrast to the one-dimensional situation these properties do not follow from the
Local Markov properties [28, 34, 35, 41, 52].

Moreover, if one tries to compare such non-local Markov properties with non-
local continuity properties by for example considering continuity properties as a
function of the lexicographic past, (as the analogue of the one-dimensional ordinary
past), it is not difficult to see that the low-temperature plus-phase of the Ising model
in d = 2, for example, although it is actually known to be well-behaved enough
that it even satisfies the Global Markov Property, has conditional probabilities which
display an essential point of discontinuity. So even a Global Markov Field can have
conditional probabilities which are discontinuous as a function of the (lexicographic)
past. The proof of this statement is very close to that of the non-Gibbsianness of the
Schonmann projection [55] (the marginal of the low-temperature two-dimensional
Gibbsmeasure on the configurations a line {Z, 0}) as given in [19], and further studied
in [4, 27] for example; only we now replace the line {Z, 0} surrounding the origin
by two half-lines {Z−, 0} and {Z+ ∪ 0,−1} in the lexicographic past of the origin,
then the proof goes through more or less literally. The wetting phenomenon which is
responsible is identical: there is an entropic repulsion from a frozen interval into the
“future” direction producing a wet droplet, and having two intervals left and right
which are large enough, causes the two wet droplets to merge. Under conditions of
stronguniqueness (high-temperatureDobrushin uniqueness, orDobrushin-Shlosman
conditions e.g.), continuity of the magnetisation in the origin as a function of the
lexicographic past configurations holds, however. (I thank BrianMarcus and Siamak
Taati for asking me this question and discussions on this issue).
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