202 research outputs found

    Effects of epibiosis on consumer-prey interactions

    Get PDF
    In many benthic communities predators play a crucial role in the population dynamics of their prey. Surface characteristics of the prey are important for recognition and handling by the predator. Because the establishment of an epibiotic assemblage on the surface of a basibiont species creates a new interface between the epibiotized organism and its environment, we hypothesised that epibiosis should have an impact on consumer-prey interactions. In separate investigations, we assessed how epibionts on macroalgae affected the susceptibility of the latter to herbivory by the urchin Arbacia punctulata and how epibionts on the blue mussel Mytilus edulis affected its susceptibility to predation by the shore crab Carcinus maenas. Some epibionts strongly affected consumer feeding behavior. When epibionts were more attractive than their host, consumer pressure increased. When epibionts were less attractive than their host or when they were repellent, consumer pressure decreased. In systems that are controlled from the top-down, epibiosis can strongly influence community dynamics. For the Carcinus/Mytilus system that we studied, the insitu distribution of epibionts on mussels reflected the epibiosis-determined preferences of the predator. Both direct and indirect effects are involved in determining these epibiont-prey-consumer interactions

    Global Patterns of Guild Composition and Functional Diversity of Spiders

    Get PDF
    The objectives of this work are: (1) to define spider guilds for all extant families worldwide; (2) test if guilds defined at family level are good surrogates of species guilds; (3) compare the taxonomic and guild composition of spider assemblages from different parts of the world; (4) compare the taxonomic and functional diversity of spider assemblages and; (5) relate functional diversity with habitat structure. Data on foraging strategy, prey range, vertical stratification and circadian activity was collected for 108 families. Spider guilds were defined by hierarchical clustering. We searched for inconsistencies between family guild placement and the known guild of each species. Richness and abundance per guild before and after correcting guild placement were compared, as were the proportions of each guild and family between all possible pairs of sites. Functional diversity per site was calculated based on hierarchical clustering. Eight guilds were discriminated: (1) sensing, (2) sheet, (3) space, and (4) orb web weavers; (5) specialists; (6) ambush, (7) ground, and (8) other hunters. Sixteen percent of the species richness corresponding to 11% of all captured individuals was incorrectly attributed to a guild by family surrogacy; however, the correlation of uncorrected vs. corrected guilds was invariably high. The correlation of guild richness or abundances was generally higher than the correlation of family richness or abundances. Functional diversity was not always higher in the tropics than in temperate regions. Families may potentially serve as ecological surrogates for species. Different families may present similar roles in the ecosystems, with replacement of some taxa by other within the same guild. Spiders in tropical regions seem to have higher redundancy of functional roles and/or finer resource partitioning than in temperate regions. Although species and family diversity were higher in the tropics, functional diversity seems to be also influenced by altitude and habitat structure

    Re-Shuffling of Species with Climate Disruption: A No-Analog Future for California Birds?

    Get PDF
    By facilitating independent shifts in species' distributions, climate disruption may result in the rapid development of novel species assemblages that challenge the capacity of species to co-exist and adapt. We used a multivariate approach borrowed from paleoecology to quantify the potential change in California terrestrial breeding bird communities based on current and future species-distribution models for 60 focal species. Projections of future no-analog communities based on two climate models and two species-distribution-model algorithms indicate that by 2070 over half of California could be occupied by novel assemblages of bird species, implying the potential for dramatic community reshuffling and altered patterns of species interactions. The expected percentage of no-analog bird communities was dependent on the community scale examined, but consistent geographic patterns indicated several locations that are particularly likely to host novel bird communities in the future. These no-analog areas did not always coincide with areas of greatest projected species turnover. Efforts to conserve and manage biodiversity could be substantially improved by considering not just future changes in the distribution of individual species, but including the potential for unprecedented changes in community composition and unanticipated consequences of novel species assemblages

    Back from a Predicted Climatic Extinction of an Island Endemic: A Future for the Corsican Nuthatch

    Get PDF
    The Corsican Nuthatch (Sitta whiteheadi) is red-listed as vulnerable to extinction by the IUCN because of its endemism, reduced population size, and recent decline. A further cause is the fragmentation and loss of its spatially-restricted favourite habitat, the Corsican pine (Pinus nigra laricio) forest. In this study, we aimed at estimating the potential impact of climate change on the distribution of the Corsican Nuthatch using species distribution models. Because this species has a strong trophic association with the Corsican and Maritime pines (P. nigra laricio and P. pinaster), we first modelled the current and future potential distribution of both pine species in order to use them as habitat variables when modelling the nuthatch distribution. However, the Corsican pine has suffered large distribution losses in the past centuries due to the development of anthropogenic activities, and is now restricted to mountainous woodland. As a consequence, its realized niche is likely significantly smaller than its fundamental niche, so that a projection of the current distribution under future climatic conditions would produce misleading results. To obtain a predicted pine distribution at closest to the geographic projection of the fundamental niche, we used available information on the current pine distribution associated to information on the persistence of isolated natural pine coppices. While common thresholds (maximizing the sum of sensitivity and specificity) predicted a potential large loss of the Corsican Nuthatch distribution by 2100, the use of more appropriate thresholds aiming at getting closer to the fundamental distribution of the Corsican pine predicted that 98% of the current presence points should remain potentially suitable for the nuthatch and its range could be 10% larger in the future. The habitat of the endemic Corsican Nuthatch is therefore more likely threatened by an increasing frequency and intensity of wildfires or anthropogenic activities than by climate change

    Climate Change Impact on Neotropical Social Wasps

    Get PDF
    Establishing a direct link between climate change and fluctuations in animal populations through long-term monitoring is difficult given the paucity of baseline data. We hypothesized that social wasps are sensitive to climatic variations, and thus studied the impact of ENSO events on social wasp populations in French Guiana. We noted that during the 2000 La Niña year there was a 77.1% decrease in their nest abundance along ca. 5 km of forest edges, and that 70.5% of the species were no longer present. Two simultaneous 13-year surveys (1997–2009) confirmed the decrease in social wasps during La Niña years (2000 and 2006), while an increase occurred during the 2009 El Niño year. A 30-year weather survey showed that these phenomena corresponded to particularly high levels of rainfall, and that temperature, humidity and global solar radiation were correlated with rainfall. Using the Self-Organizing Map algorithm, we show that heavy rainfall during an entire rainy season has a negative impact on social wasps. Strong contrasts in rainfall between the dry season and the short rainy season exacerbate this effect. Social wasp populations never recovered to their pre-2000 levels. This is probably because these conditions occurred over four years; heavy rainfall during the major rainy seasons during four other years also had a detrimental effect. On the contrary, low levels of rainfall during the major rainy season in 2009 spurred an increase in social wasp populations. We conclude that recent climatic changes have likely resulted in fewer social wasp colonies because they have lowered the wasps' resistance to parasitoids and pathogens. These results imply that Neotropical social wasps can be regarded as bio-indicators because they highlight the impact of climatic changes not yet perceptible in plants and other animals

    A Climate Change Vulnerability Assessment of California's At-Risk Birds

    Get PDF
    Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified climate vulnerability by scoring sensitivity (intrinsic characteristics of an organism that make it vulnerable) and exposure (the magnitude of climate change expected) for each taxon. Using the combined sensitivity and exposure scores as an index, we ranked 358 avian taxa, and classified 128 as vulnerable to climate change. Birds associated with wetlands had the largest representation on the list relative to other habitat groups. Of the 29 state or federally listed taxa, 21 were also classified as climate vulnerable, further raising their conservation concern. Integrating climate vulnerability and California's Bird Species of Special Concern list resulted in the addition of five taxa and an increase in priority rank for ten. Our process illustrates a simple, immediate action that can be taken to inform climate change adaptation strategies for wildlife

    Climate Change Hastens the Conservation Urgency of an Endangered Ungulate

    Get PDF
    Global climate change appears to be one of the main threats to biodiversity in the near future and is already affecting the distribution of many species. Currently threatened species are a special concern while the extent to which they are sensitive to climate change remains uncertain. Przewalski's gazelle (Procapra przewalskii) is classified as endangered and a conservation focus on the Qinghai-Tibetan Plateau. Using measures of species range shift, we explored how the distribution of Przewalski's gazelle may be impacted by projected climate change based on a maximum entropy approach. We also evaluated the uncertainty in the projections of the risks arising from climate change. Modeling predicted the Przewalski's gazelle would be sensitive to future climate change. As the time horizon increased, the strength of effects from climate change increased. Even assuming unlimited dispersal capacity of gazelles, a moderate decrease to complete loss of range was projected by 2080 under different thresholds for transforming the probability prediction to presence/absence data. Current localities of gazelles will undergo a decrease in their occurrence probability. Projections of the impacts of climate change were significantly affected by thresholds and general circulation models. This study suggests climate change clearly poses a severe threat and increases the extinction risk to Przewalski's gazelle. Our findings 1) confirm that endangered endemic species is highly vulnerable to climate change and 2) highlight the fact that forecasting impacts of climate change needs an assessment of the uncertainty. It is extremely important that conservation strategies consider the predicted geographical shifts and be planned with full knowledge of the reliability of projected impacts of climate change
    corecore